首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Körner M  Reubi JC 《Peptides》2007,28(2):419-425
Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.  相似文献   

2.
Regulatory, receptor-binding peptides are considered as the agents of choice for diagnostic imaging and therapy of cancers, because their receptors are overexpressed in various human cancer cells. It has been recently indicated that there is a putative role of NPY in breast tumors. The expression of the two best-investigated NPY receptor subtypes, Y1 and Y2, in breast tissue shows predominant occurrence of the Y1 receptor subtype in tumors, whereas Y2 receptors are found in nonproliferative tissue. To investigate the usefulness of NPY analogs for tumor diagnosis and therapy, we investigated the metabolic stability of receptor-selective NPY analogs in human blood plasma. NPY analogs were synthesized by Fmoc/t-Bu solid-phase strategy. Prior to the cleavage of peptides from the resin, they were labeled with 5(6)-carboxyfluorescein (CF) either at the N-terminus or at the side chain of Lys4. For the metabolic stability study, the digestion of peptides was monitored by HPLC and the cleavage products were identified by MALDI-ToF mass spectrometry. The data showed that full-length [Phe7, Pro34]NPY analogs, which show high binding affinity to Y1 receptors are enzymatically more stable than centrally truncated analogs, which show high binding affinity to Y2 receptors. Furthermore, the N-terminally CF-labeled Y1 and Y2 receptor-selective peptides were found to be enzymatically more resistant than their counterparts containing the CF label at Lys4 side chain.  相似文献   

3.
We report the cloning and pharmacological characterization of two neuropeptide Y (NPY) receptor subtypes, Y2 and Y7, in rainbow trout (Oncorhynchus mykiss). These subtypes are approximately 50% identical to each other and belong to the Y2 subfamily of NPY receptors. The binding properties of the receptors were investigated after expression in human HEK-293 EBNA cells. Both receptors bound the three zebrafish peptides NPY, PYYa, and PYYb, as well as porcine NPY and PYY, with affinities in the nanomolar range that are similar to mammalian Y2. The affinity of the truncated porcine NPY fragments, NPY 13-36 and NPY 18-36 was markedly lower compared to mammalian and chicken Y2. This suggests that mammalian and chicken Y2 are unique among NPY receptors in their ability to bind truncated peptide fragments. The antagonist BIIE0246, developed for mammalian Y2, did not bind either of the two rainbow trout receptors. Our results support the proposed expansion of this gene family by duplications before the gnathostome radiation. They also reveal appreciable differences in the repertoire and characteristics of NPY receptors between fish and tetrapods stressing the importance of lineage-specific gene loss as well as sequence divergence after duplication.  相似文献   

4.
5.
神经肽Y(NPY)的生理功能研究进展   总被引:11,自引:0,他引:11  
神经肽Y(NPY)是机体内的一种重要且保守的神经递质,一般以前体形式存在,释放的有活性的NPY主要通过与其受体结合发挥作用。NPY受体包含了亚型Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8。Y1和Y2是NPY发挥收缩血管作用的关键受体;Y1、Y2和Y5是NPY调节动物摄食行为的关键受体;Y1、Y2和Y4是NPY调控动物焦虑、沮丧行为的必要受体。着重对NPY与其各种受体结合后如何行使动物的相关生理功能的情况进行了阐述。  相似文献   

6.
In the present work, we investigated the role of pre- and post-synaptic neuropeptide Y1 (NPY1) and Y2 receptors on the calcium responses and on glutamate release in the rat hippocampus. In cultured hippocampal neurones, we observed that only NPY1 receptors are involved in the modulation of intracellular free calcium concentration ([Ca(2+)](i)). In 88% of the neurones analysed, the increase in the [Ca(2+)](i), in response to depolarization with 50 mM KCl, was inhibited by 1 microM [Leu31,Pro34]NPY, whereas 300 nM NPY13-36 was without effect. However, studies with hippocampal synaptosomes showed that both NPY1 and Y2 receptors can modulate the [Ca(2+)](i) and glutamate release. The pharmacological characterization of the NPY-induced inhibition of glutamate release indicated that Y2 receptors play a predominant role, both in the modulation of Ca(2+)-dependent and -independent glutamate release. However, we could distinguish between Y1 and Y2 receptors by using [Leu31,Pro34]NPY and NPY13-36. Active pre-synaptic Y1 receptors are present in the dentate gyrus (DG) as well as in the CA3 subregion, but its activity was not revealed by using the endogenous agonist, NPY. Concerning the Y2 receptors, they are present in the three subregions (CA1, CA3 and DG) and were activated by either NPY13-36 or NPY. The present data support a predominant role for NPY2 receptors in mediating NPY-induced inhibition of glutamate release in the hippocampus, but the physiological relevance of the presently described DG and CA3 pre-synaptic NPY1 receptors remains to be clarified.  相似文献   

7.
Abstract Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y(1)-Y(5) and y(6). Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

8.
Ligand binding to rodent pancreatic polypeptide-responding neuropeptide Y (NPY) receptors (here termed PP/NPY receptors), or to cloned Y4 or Y5 receptors, is selectively inhibited by amiloride, peptide or alkylating modulators of sodium transport. The PP/NPY and Y4 receptors are also selectively blocked by human or rat pancreatic polypeptide (PP) and the blocking peptides are not dissociated by high concentrations of alkali chlorides (which restore most of the binding of subtype-selective agonists to Y1 and Y2 sites). The PP/NPY receptors could also be blocked by NPY and related full-length peptides, including Y1-selective agonists (IC50 300-400 pM). The cloned Y(4) receptors from three species are much less sensitive to NPY or PYY. The sensitivity of both the PP/NPY sites and the Y(4) sites to Y2-selective peptides is quite low. The ligand attachment to PP/NPY sites is also very sensitive to peptidic Y1 antagonist ((Cys31,NVal34NPY27-36))2, which however blocks these sites at much higher molarities. Blockade of PP/NPY and Y4 sites by agonist peptides can be largely prevented by N5-substituted amiloride modulators of Na+ transport, and by RFamide NRNFLRF.NH2, but not by Ca2+ channel blockers, or by inhibitors of K+ transport. Protection of both PP/NPY and Y4 sites against blockade by human or rat pancreatic polypeptide is also afforded by short N-terminally truncated NPY-related peptides. The above results are consistent with a stringent and selective activity regulation for rabbit PP/NPY receptor(s) that may serve to differentiate agonists and constrain signaling, and could involve transporter-like interactants.  相似文献   

9.
Kuo LE  Abe K  Zukowska Z 《Peptides》2007,28(2):435-440
Neuropeptide Y (NPY) has long been known to be involved in stress, centrally as an anxiolytic neuromodulator, and peripherally as a sympathetic nerve- and in some species, platelet-derived vasoconstrictor. The peptide is also a vascular mitogen, via Y1/Y5, and is angiogenic via Y2/Y5 receptors. Arterial injury activates platelet NPY and vascular Y1 receptors, inducing medial hypertrophy and neointima formation. Exogenous NPY, dipeptidyl peptidase IV (DPPIV, forming an Y2/Y5-selective agonist) and chronic stress augment these effects and occlude vessels with atherosclerotic-like lesions, containing thrombus and lipid-laden macrophages. Y1 antagonist blocks stress-induced vasoconstriction and post-angioplasty occlusions, and hence may be therapeutic in angina and atherosclerosis/restenosis. Conversely, tissue ischemia activates neuronal and platelet-derived NPY, Y2/Y5 and DPPIV, which stimulate angiogenesis/arteriogenesis. NPY-Y2-DPPIV agonists may be beneficial for ischemic revascularization and wound healing, whereas antagonists may be therapeutic in retinopathy, tumors, and obesity. Since stress is an underestimated risk factor in many of these conditions, NPY-based drugs may offer new treatment possibilities.  相似文献   

10.
Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

11.
Neuropeptide Y (NPY) has been reported to be a potent anti-inflammatory peptide with ability to directly modulate activity of granulocytes and macrophages. The present study aimed to correlate the effects of NPY in vivo on lipopolysaccharide-induced air-pouch exudates cells and in vitro on peripheral blood leukocytes functions. The role of different Y receptors was examined using NPY-related peptides and antagonists with diverse subtype specificity and selectivity for Y receptors. Y1, Y2 and Y5 receptors were detected on air-pouch exudates cells (flow cytometry) and peripheral blood granulocytes (immunocitochemistry). NPY in vivo reduced inflammatory cells accumulation into the air pouch, and decreased their adherence and phagocytic capacity via Y2/Y5 and Y1/Y2 receptors, respectively. Quite the opposite, NPY in vitro potentiated adhesiveness and phagocytosis of peripheral blood granulocytes and monocytes by activating Y1 receptor. The differences between in vivo and in vitro effects of NPY on rat inflammatory cells functions are mostly due to dipeptidyl peptidase 4 activity. In addition, suppressive effect of NPY in vivo is highly dependent on the local microenvironment, peptide truncation and specific Y receptors interplay.  相似文献   

12.
The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.  相似文献   

13.
The involvement of Neuropeptide Y (NPY) in the pathophysiology of mood disorders has been suggested by clinical and preclinical evidence. NPY Y1 and Y2 receptors have been proposed to mediate the NPY modulation of stress responses and anxiety related behaviors. To further investigate the role of Y2 receptors in anxiety we studied the effect of BIIE0246, a selective Y2 receptor antagonist, in the elevated plus-maze test. Rats treated with 1.0 nmol BIIE0246 showed an increase in the time spent on the open arm of the maze. In addition, to study the effects of the Y2 antagonism on NPY protein level, NPY-like immunoreactivity was measured in different brain regions following treatment with BIIE0246, but no statistically significant effects were observed. These results suggest that BIIE0246 has an anxiolytic-like profile in the elevated plus-maze.  相似文献   

14.
Redrobe JP  Dumont Y  Quirion R 《Life sciences》2002,71(25):2921-2937
Neuropeptide Y (NPY) is widely distributed throughout the central nervous system (CNS) and is one of the most conserved peptides in evolution, suggesting an important role in the regulation of basic physiological functions. In addition, both pre-clinical and clinical evidence have suggested that NPY, together with its receptors, may have a direct implication in several psychiatric disorders, including depression and related illnesses. NPY-like immunoreactivity and NPY receptors are expressed throughout the brain, with varying concentrations being found throughout the limbic system. Such brain structures have been repeatedly implicated in the modulation of emotional processing, as well as in the pathogenesis of depressive disorders. This review will concentrate on the distribution of NPY, its receptors, and the putative role played by this peptide in depressive illness based on both pre-clinical and clinical evidence.  相似文献   

15.
Cardiovascular and respiratory effects of intracerebroventricular (icv) administration of neuropeptide Y (NPY) and separate, preferential agonists for NPY Y1 and Y2 receptors were observed in anaesthetised dogs. Central injections of NPY resulted in significant cardiac slowing and decreases in arterial pressure. These cardiovascular effects were blocked by central injection of the NPY Y1- preferring antagonist 1229U91. Central injection of NPY did not have a significant effect on ventilation, but the NPY Y1 antagonist 1229U91 administered alone caused a significant increase in ventilation. The NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreased ventilation while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24--36 significantly increased it. A similar inverse relationship was seen with respect to blood pressure, with the NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreasing blood pressure, while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24-36 significantly increased it. These findings suggest a role for NPY Y1 receptors in pathways mediating decreases in ventilation and blood pressure, and for NPY Y2 receptors in those mediating increased ventilation and blood pressure.  相似文献   

16.
高云  洪炎国 《生命科学》2009,(4):531-535
神经肽Y(neuropeptide Y,NPY)是一种由36个氨基酸残基组成的肽类激素,属胰多肽家族,广泛分布于中枢及外周神经组织的神经元中。NPY主要参与摄食行为、心血管活动、垂体分泌等生理功能的调节。NPY还参与了痛觉调制。NPY受体有Y1、Y2、Y3、Y4、Y5和Y6六种亚型。目前对Y1受体和Y2受体的研究较多,显示Y1受体和Y2受体参与痛觉调制。但现在对NPY在痛觉中的具体作用机制还不清楚。该文对NPY及其Y1受体、Y2受体在痛觉调制中的作用作一概述。  相似文献   

17.
It is well documented that neuropeptide Y (NPY) exerts a wide range of biological functions through at least five NPY Y receptor subtypes (Y1-Y5), but its immunological effects only recently came into focus. Using NPY family peptides and NPY-related receptor-specific peptides as well as Y1 and Y2 receptor antagonists, we have tested which NPY Y receptors are involved in NPY-induced modulation of rat peritoneal macrophage function in vitro. NPY and PYY increased oxidative burst in phorbol myristate acetate (PMA)-stimulated macrophages involving activation of protein kinase C (PKC), and decreased it in zymosan-stimulated cells resembling inhibition of signaling pathways subsequent to binding of zymosan particles for the iC3b fragment receptor on macrophages. The combined treatment with NPY and NPY Y receptor antagonists revealed that NPY-induced potentiation of oxidative burst in PMA-stimulated cells is mediated through Y1 and Y2 receptors, while NPY-induced suppression in zymosan-stimulated cells is mediated through Y2 receptors only. NPY-related peptides differently modulated macrophage function, confirming involvement of NPY Y2 receptor in both potentiation and suppression of oxidative burst in these cells. Additionally, it was shown that NPY Y5 receptor mediated suppression of oxidative burst in PMA- and zymosan-stimulated macrophages. Taken together, the present data reveal an NPY Y1 and Y2/Y5 receptor interaction in NPY-induced modulation of macrophage functions related to inflammation.  相似文献   

18.
Abstract

Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

19.
Prior studies have revealed that the sympathetic nervous system regulates the clinical and pathological manifestations of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model mediated by Th1 T cells. Although the regulatory role of catecholamines has been indicated in the previous works, it remained possible that other sympathetic neurotransmitters like neuropeptide Y (NPY) may also be involved in the regulation of EAE. Here we examined the effect of NPY and NPY receptor subtype-specific compounds on EAE, actively induced with myelin oligodendrocyte glycoprotein 35-55 in C57BL/6 mice. Our results revealed that exogenous NPY as well as NPY Y(1) receptor agonists significantly inhibited the induction of EAE, whereas a Y(5) receptor agonist or a combined treatment of NPY with a Y(1) receptor antagonist did not inhibit signs of EAE. These results indicate that the suppression of EAE by NPY is mediated via Y(1) receptors. Furthermore, treatment with the Y(1) receptor antagonist induced a significantly earlier onset of EAE, indicating a protective role of endogenous NPY in the induction phase of EAE. We also revealed a significant inhibition of myelin oligodendrocyte glycoprotein 35-55-specific Th1 response as well as a Th2 bias of the autoimmune T cells in mice treated with the Y(1) receptor agonist. Ex vivo analysis further demonstrated that autoimmune T cells are directly affected by NPY via Y(1) receptors. Taken together, we conclude that NPY is a potent immunomodulator involved in the regulation of the Th1-mediated autoimmune disease EAE.  相似文献   

20.
The actions of neuropeptide Y (NPY) are mediated by at least six G-protein coupled receptors denoted as Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Investigations using receptor selective ligands and receptor knock-out mice suggest that NPY effects on feeding are mediated by both Y(1) and Y(5) receptors. We have previously shown that Cys-dimers of NPY C-terminal peptides exhibit Y(1) selectivity relative to Y(2) receptors. Re-investigation of their selectivity with respect to the newly cloned receptors, has identified bis(31/31') [[Cys(31), Nva(34)]NPY(27-36)-NH(2)] (BWX-46) as a Y(5) receptor selective agonist. BWX-46 selectively bound Y(5) receptors, and inhibited cAMP synthesis by Y(5) cells with potencies comparable to that of NPY. Moreover, BWX-46 (10 microM) exhibited no significant effect on the cAMP synthesis by Y(1), Y(2), and Y(4) cells. Thus, BWX-46 constitutes the lowest molecular weight Y(5) selective agonist reported to date. Intrahypothalamic (i.h.t)-injection of 30 and 40 microg of BWX-46 stimulated the food intake by rats in a gradual manner, reaching maximal level 8 h after injection. This response was similar to that exhibited by other Y(5) selective agonists, but differed from that of NPY, which exhibited a rapid orexigenic stimulus within 1 h. It is suggested that the differences in the orexigenic stimuli of NPY and Y(5) agonists may be due to their differences in the signal transduction mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号