首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
透明质酸(HA)是一种在医药及化妆品领域具有广泛应用的天然粘多糖。兽疫链球菌(Streptococcuszooepidemicus)是工业上生产透明质酸的菌种之一。透明颤菌血红蛋白(VHb)具有增强细胞摄氧的作用。对生产透明质酸的兽疫链球菌进行了基因改造:将兽疫链球菌HA的合成基因hasABC以及合成透明颤菌血红蛋白的vgb基因(Vitreoscillahemoglobingene,vgb)分别或同时插入阳性菌表达质粒pEU308中,通过电转化导入兽疫链球菌中。通过一氧化碳(CO)差光谱检测到了VHb的表达。在摇瓶实验中,同时带有hasABC和vgb基因的重组菌比野生菌的透明质酸产量提高了30%。而在发酵罐中,带有这2个基因的重组菌的透明质酸产量达到了6.9g/L,高于重组菌5.5g/L的产量。实验结果表明,vgb基因的存在促进了细胞的生长,hasABC操纵子的过表达增强了透明质酸的合成。首次将VHb导入兽疫链球菌中,获得了表达,并证明其对菌体生长及透明质酸合成有促进作用。通过研究,VHb将可以在阳性菌中获得更广泛的应用。  相似文献   

2.
Hyaluronic acid production in Bacillus subtilis   总被引:1,自引:0,他引:1  
The hasA gene from Streptococcus equisimilis, which encodes the enzyme hyaluronan synthase, has been expressed in Bacillus subtilis, resulting in the production of hyaluronic acid (HA) in the 1-MDa range. Artificial operons were assembled and tested, all of which contain the hasA gene along with one or more genes encoding enzymes involved in the synthesis of the UDP-precursor sugars that are required for HA synthesis. It was determined that the production of UDP-glucuronic acid is limiting in B. subtilis and that overexpressing the hasA gene along with the endogenous tuaD gene is sufficient for high-level production of HA. In addition, the B. subtilis-derived material was shown to be secreted and of high quality, comparable to commercially available sources of HA.  相似文献   

3.
4.
目的:将透明颤菌血红蛋白vgb基因应用于核黄素的工业化生产。方法:以枯草芽孢杆菌整合载体pAmyE构建了vgb基因的整合表达载体pAudV,采用化学转化法将vgb基因整合到枯草芽孢杆菌GJ08的染色体上,并通过发酵摇瓶实验检测核黄素的产量。结果:得到产核黄素枯草芽孢杆菌GJ09,摇瓶试验结果表明,在限氧条件下核黄素的产量分别提高了5.23%和3.42%。结论:透明颤菌血红蛋白vgb基因能够促进核黄素产量的提高,可以应用于核黄素的工业化生产中。  相似文献   

5.
刘刚  张燕  邢苗 《生物工程学报》2006,22(2):191-197
探讨了双启动子对基于溶源性噬菌体构建的重组枯草杆菌中外源蛋白表达的影响。分别将不含或含有本身启动子的α-淀粉酶基因(来源于Bacillus amyloliquefaciens)和青霉素酰化酶基因(来源于Bacillus megaterium)克隆到溶源性枯草杆菌中,得到重组菌B.subtilisAMY1,B.subtilisAMY2,B.subtilisPA1以及B.subtilisPA2。由于同源重组,所克隆的片段整合到溶源性枯草杆菌中的噬菌体基因组上,并处于噬菌体强启动子的下游。在重组菌AMY1和PA1中,在热诱导的情况下外源基因的转录只受到噬菌体启动子的作用,而在重组菌AMY2和PA2中,在热诱导下外源基因的转录同时受到噬菌体启动子和基因本身所带启动子的作用。双启动子的应用使重组α-淀粉酶的表达量提高了133%,使重组青霉素酰化酶的表达量提高了113%。  相似文献   

6.
枯草芽孢杆菌ccpA基因敲除及对其核黄素产量的影响   总被引:3,自引:0,他引:3  
应明  班睿 《微生物学报》2006,46(1):23-27
CcpA蛋白是介导枯草芽孢杆菌碳分解代谢物阻遏(CCR)的全局调控因子,由ccpA基因编码。CCR效应的存在影响B.subtilis对葡萄糖的利用,降低B.subtilis生产发酵产品的效率。采用基因重组技术敲除了核黄素发酵菌株B.subtilis24/pMX45的ccpA基因,构建了CcpA缺陷株B.subtilis24A1/pMX45。发酵结果显示:B.subtilis24A1/pMX45能够在70h内基本耗尽10%的葡萄糖,生物量达到1.5×109个细胞/mL,溢流代谢产物积累量减少,在8%和10%葡萄糖浓度下,B.subtilis24A1/pMX45核黄素产量分别比B.subtilis24/pMX45提高了62%和95%。CcpA的缺陷,可以缓解葡萄糖引起的CCR效应,显著提高菌株的核黄素产量。  相似文献   

7.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 microg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a p(R) promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

8.
In several organisms, expression of a gene encoding dimeric hemoglobin (VHb) from the obligate aerobic bacterium Vitreoscilla stercoraria has been shown to increase microaerobic cell growth and enhance oxygen-dependent cell metabolism. In an attempt to further improve these effects of VHb, a gene encoding two vhb genes connected by a short linker of six base pairs was constructed and expressed in Escherichia coli(double VHb). Escherichia coli cells expressing double VHb reached a cell density 19% higher than that of cells expressing native VHb. The protein production per cell remained constant since the increase in cell growth was accompanied by an increase in protein content by 16%. Investigation of ribosome and tRNA content revealed that cells expressing double VHb reached their maximal capacity of protein synthesis later during cultivation than cells expressing native VHb, and furthermore they reached considerably higher levels of ribosome and tRNA compared to that of the VHb-expressing cells.  相似文献   

9.
Engineering of hyaluronic acid (HA) biosynthetic pathway in recombinant Escherichia coli as production host is reported in this work. A hyaluronic acid synthase (HAS) gene, sphasA, from Sreptococcus pyogenes with the start codon gtg to atg mutant, was expressed in recombinant E. coli with or without the genes ugd, galF and glmU, which are analogs of hasB, hasC and hasD from Streptococcus, respectively, encoding UDP-glucose 6-dehygrogenase, Glucose-1-P uridyltransferase, and N-acetyl glucosamine uridyltransferase enzymes in the HA biosynthetic pathway. The single, double and triple organized artificial operons of sphasA, ugd, galF and glmU were designed and constructed using the inducible plasmid backbone of pMBAD. Only the triple expression recombinant, Top10/pMBAD-spABC, generated a relatively high titer of HA (approximately 48 mg/l at 48 h), indicating that both of the enzymes encoded by ugd and galF are essential for HA biosynthesis. A new gene of ssehasA with identical protein sequence of seHAS from Streptococcus equisimilis, was artificially synthesized after substituting all of the rare codons in the natural sehasA. The HA titer at 24 h flask culture increased to approximately 190 mg/l in sseAB and 160 mg/l in sseABC, respectively. Sorbitol could be used as another carbon source for HA accumulation, and the metabolic pathway for HA synthesis in a recombinant E. coli was presented. The concentration of Mg(2+) cofactor of HA synthase was optimized and a cell growth inhibition phenomenon was observed during HA accumulation. Molecular weight (MW) measurements revealed that the mean MW of HA produced from the recombinant E. coli under different conditions ranges from approximately 3.5x10(5) to 1.9x10(6)Da, indicating that the recombinant E. coli can be used as a potential host candidate for industrial production of HA.  相似文献   

10.
Plasmids carrying the intact Bacillus subtilis dnaA-like gene and two reciprocal hybrids between the B. subtilis and Escherichia coli dnaA genes were constructed. None of the plasmids could transform wild-type E. coli cells unless the cells contained surplus E. coli DnaA protein (DnaAEc). A dnaA (Ts) strain integratively suppressed by the plasmid R1 origin could be transformed by plasmids carrying either the B. subtilis gene (dnaABs) or a hybrid gene containing the amino terminus of the E. coli gene and the carboxyl terminus of the B. subtilis gene (dnaAEc/Bs). In cells with surplus E. coli DnaA protein, expression of the E. coli dnaA gene was derepressed by the B. subtilis DnaA protein and by the hybrid DnaAEc/Bs protein, whereas it was strongly repressed by the reciprocal hybrid protein DnaABs/Ec. The plasmids carrying the different dnaA genes probably all interfere with initiation of chromosome replication in E. coli by decreasing the E. coli DnaA protein concentration to a limiting level. The DnaABs and the DnaAEc/Bs proteins effect this decrease possibly by forming inactive oligomeric proteins, while the DnaABs/Ec protein may decrease dnaAEc gene expression.  相似文献   

11.
Amorpha-4,11-diene is the precursor of the antimalarial compound artemisinin. The effect of Vitreoscilla hemoglobin (VHb) and its yeast-conform variant (VHbm) on amorpha-4,11-diene production in engineered Saccharomyces cerevisiae was investigated. First, the VHb gene was mutated to the yeast-conform variant VHbm based on step-by-step extension of a short region of the gene through a series of polymerase chain reactions (PCR). The artificial VHbm gene contained codons preferred by the yeast translation machinery. Two yeast expression vectors containing VHb or VHbm gene were constructed and introduced into the amorpha-4,11-diene-producing strain S. cerevisiae WK1 to form WK1[VHb] and WK1[VHbm], respectively. Western blot and CO-difference spectrum absorbance assay showed that VHb and VHbm were successfully expressed. In shake flasks, VHbm expression conferred higher cell growth than VHb expression. GC-MS results indicated the amorpha-4,11-diene production in WK1[VHbm] and WK1[VHb] was 3- and 2-fold higher than that in WK1, respectively. This suggests that VHb might improve the amorpha-4,11-diene production in engineered S. cerevisiae.  相似文献   

12.
Inefficient carbon metabolism is a relevant issue during the culture of mammalian cells for the production of biopharmaceuticals. Therefore, cell engineering strategies to improve the metabolic and growth performance of cell lines are needed. The expression of Vitreoscilla stercoraria hemoglobin (VHb) has been shown to significantly reduce overflow metabolism and improve the aerobic growth of bacteria. However, the effects of VHb on mammalian cells have been rarely studied. Here, the impact of VHb on growth and lactate accumulation during CHO‐K1 cell culture was investigated. For this purpose, CHO‐K1 cells were transfected with plasmids carrying the vgb or gfp gene to express VHb or green fluorescence protein (GFP), respectively. VHb expression increased the specific growth rate and biomass yields on glucose and glutamine by 60 %, and reduced the amount of lactate produced per cell by 40 %, compared to the GFP‐expression controls. Immunofluorescence microscopy showed that VHb is distributed in the cytoplasm and organelles, which support the hypothesis that VHb could serve as an oxygen carrier, enhancing aerobic respiration. These results are useful for the development of better producing cell lines for industrial applications.  相似文献   

13.
解脂耶氏酵母胞外脂肪酶Lip2(YlLip2)是一种具有广泛应用前景的工业酶.为了改善高密度发酵生产Y1Lip2过程中的溶氧限制,提高Y1Lip2的表达量,将YlLip2基因lip2和透明颤菌血红蛋白(VHb)基因vgb分别置于AOXl启动子和PsADH2启动子的调控之下,进行YlLip2和VHb在毕赤酵母中的共表达.PsADH2启动子来源于树干毕赤酵母Pichia stipitis,在低氧条件下能被激活.SDS-PAGE和CO-差式光谱分析表明,Y1Lip2和VHb在重组菌中成功实现了共表达.在氧限制性条件下,VHb表达的细胞(VHb+,GS 115/9Klip2-pZPVT)与对照细胞(VHb-,GS 115/9Klip2)相比,摇瓶和10 L发酵罐中YlLip2表达量分别提高了25%和83%.此外,在低氧条件下,VHb+细胞在10 L发酵罐中的生物量也比VHb-细胞高.文中也获得了一株表达了VHb的并携带有多个lip2基因拷贝的克隆子GS 115/9Klip2-pZP VTlip2 49#,在低氧条件下,该克隆子在10L发酵罐中的最高脂肪酶水解活力达33 900 U/mL.因此,在毕赤酵母中用PsADH2启动子表达VHb,同时增加lip2基因的拷贝数是提高YlLip2表达量的一种有效策略.  相似文献   

14.
重组枯草芽胞杆菌不对称还原产d-伪麻黄碱   总被引:1,自引:1,他引:1  
为了实现羰基还原酶基因mldh在枯草芽胞杆菌Bacillus subtilis中的表达并通过细胞内的葡萄糖脱氢酶完成辅酶的再生,以枯草芽胞杆菌rpsD基因的启动子PrpsD和终止子TrpsD为表达元件,将羰基还原酶基因mldh连接至构建好的质粒(pHY300plk-PrpsD-TrpsD上,得到质粒pHY300plk-PrpsD-mldh-TrpsD;进一步将重组质粒转化入B. subtilis Wb600中获得重组菌B. subtilis Wb600 (pHY300plk-PrpsD-mldh-Trps  相似文献   

15.
16.
Limited oxygen availability is a prevalent problem in microbial biotechnology. Recombinant Escherichia coli expressing the hemoglobin from Vitreoscilla (VHb) or the flavohemoglobin from Ralstonia eutropha (formerly Alcaligenes eutrophus) (FHP) demonstrate significantly increased cell growth and productivity under microaerobic conditions. We identify novel bacterial hemoglobin-like proteins and examine if these novel bacterial hemoglobins can elicit positive effects similar to VHb and FHP and if these hemoglobins alleviate oxygen limitation under microaerobic conditions when expressed in E. coli. Several finished and unfinished bacterial genomes were screened using R. eutropha FHP as a query sequence for genes (hmp) encoding hemoglobin-like proteins. Novel hmp genes were identified in Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Deinococcus radiodurans, and Campylobacter jejuni. Previously characterized hmp genes from E. coli and Bacillus subtilis and the novel hmp genes from P. aeruginosa, S. typhi, C. jejuni, K. pneumoniae, and D. radiodurans were PCR amplified and introduced into a plasmid for expression in E. coli. Biochemically active hemoproteins were expressed in all constructs, as judged by the ability to abduct carbon monoxide. Growth behavior and byproduct formation of E. coli K-12 MG1655 cells expressing various hemoglobins were analyzed in microaerobic fed-batch cultivations and compared to plasmid-bearing control and to E. coli cells expressing VHb. The clones expressing hemoglobins from E. coli, D. radiodurans, P.aeruginosa, and S. typhi reached approximately 10%, 27%, 23%, and 36% higher final optical density values, respectively, relative to the plasmid bearing E. coli control (A(600) 5.5). E. coli cells expressing hemoproteins from P. aeruginosa, S. typhi, and D. radiodurans grew to similar final cell densities as did the strain expressing VHb (A(600) 7.5), although none of the novel constructs was able to outgrow the VHb-expressing E. coli strain. Additionally, increased yield of biomass on glucose was measured for all recombinant strains, and an approximately 2-fold yield enhancement was obtained with D. radiodurans hemoprotein-expressing E. coli relative to the E. coli control carrying the parental plasmid without any hemoglobin gene.  相似文献   

17.
Expression of the gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been previously used to improve recombinant cell growth and enhance product formation under microaerobic conditions. It is very likely that the properties of VHb are not optimized for foreign hosts; therefore, we used error-prone PCR to generate a number of randomly mutated vhb genes to be expressed and studied in Escherichia coli. In addition, the mutated VHb proteins also contained an extension of eight residues (MTMITPSF) at the amino terminus. VHb mutants were screened for improved growth properties under microaerobic conditions and 15 clones expressing mutated hemoglobin protein were selected for further characterization and cultivated in a microaerobic bioreactor to analyze the physiological effects of novel VHb proteins on cell growth. The expression of four VHb mutants, carried by pVM20, pVM50, pVM104, and pVM134, were able to enhance microaerobic growth of E. coli by approximately 22%, 155%, 50%, and 90%, respectively, with a concomitant decrease of acetate excretion into the culture medium. The vhb gene in pVM20 contains two mutations substituting residues Glu19(A17) and Glu137(H23) to Gly. pVM50 expresses a VHb protein carrying two mutations: His36(C1) to Arg36 and Gln66(E20) to Arg66. pVM104 and pVM134 express VHb proteins carrying the mutations Ala56(E10) to Gly and Ile24(B5) to Thr, respectively. Our experiments also indicate that the positive effects elicited by mutant VHb-expression from pVM20 and pVM50 are linked to the peptide tail. Removal of the N-terminal sequence reduced cell growth approximately 23% and 53%, respectively, relative to wild-type controls. These results clearly demonstrate that it is possible to obtain mutated VHb proteins with improved characteristics for improving microaerobic growth of E. coli by using combined mutation techniques, addition of a peptide tail, and random error-prone PCR.  相似文献   

18.
19.
Escherichia coli strain FBR5, which has been engineered to direct fermentation of sugars to ethanol, was further engineered, using three different constructs, to contain and express the Vitreoscilla hemoglobin gene (vgb). The three resulting strains expressed Vitreoscilla hemoglobin (VHb) at various levels, and the production of ethanol was inversely proportional to the VHb level. High levels of VHb were correlated with an inhibition of ethanol production; however, the strain (TS3) with the lowest VHb expression (approximately the normal induced level in Vitreoscilla) produced, under microaerobic conditions in shake flasks, more ethanol than the parental strain (FBR5) with glucose, xylose, or corn stover hydrolysate as the predominant carbon source. Ethanol production was dependent on growth conditions, but increases were as high as 30%, 119%, and 59% for glucose, xylose, and corn stover hydrolysate, respectively. Only in the case of glucose, however, was the theoretical yield of ethanol by TS3 greater than that achieved by others with FBR5 grown under more closely controlled conditions. TS3 had no advantage over FBR5 regarding ethanol production from arabinose. In 2 L fermentors, TS3 produced about 10% and 15% more ethanol than FBR5 for growth on glucose and xylose, respectively. The results suggest that engineering of microorganisms with vgb/VHb could be of significant use in enhancing biological production of ethanol.  相似文献   

20.
The gene of microbial lysozyme (lyz) of S. aureus 118 and the gene of lysostaphin (lzf) of S. aureus RN 3239 were cloned and their expression in B. subtilis cells was shown. Lysozyme production in B. subtilis recombinant clone pLF14-Lyz, obtained as the result of cloning, was 2.5-fold greater than lysozyme production in S. aureus wild strain 118. Lysostaphin production in B. subtilis recombinant strain pLF14-Lzf which had inherited the cloned genes was approximately equal to lysostaphin production observed in S. aureus initial strain RN 3239. The production of lysozyme and lysostaphin in the cells of B. subtilis recombinant strains was observed at 30 degrees C and pH 5.5, while in S. aureus initial strains 118 and RN 3239 bacteria produced lysozyme and lysostaphin at 37 degrees C and pH 7.5 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号