共查询到20条相似文献,搜索用时 0 毫秒
1.
Godon JJ Delorme C Ehrlich SD Renault P 《Applied and environmental microbiology》1992,58(12):4045-4047
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities. 相似文献
2.
V. Monnet W. Bockelmann J. C. Gripon M. Teuber 《Applied microbiology and biotechnology》1989,31(2):112-118
Summary The cell wall proteinases of Lactococcus lactis subsp. lactis NCDO 763 and L. lactis subsp. cremoris AC1 hydrolyse -casein with a similar specificity even though some quantitative differences can be observed for a few degradation products analysed by reverse phase HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The main peptides soluble in 1.1% trifluoroacetic acid and liberated by the two proteinases were identified and have been found to be the same for the two enzymes. They are located in two areas of the -casein sequence (53–93 and the C-terminal part: 129–209) and they include bitter tasting or physiologically active fragments. No narrow specificity was observed for these proteinases. However, glutamine and serine residues are more frequently encountered in position P1 and P1 of the sensitive peptide bond and the close environment (position P2 to P4 and P2 to P4) of the cleaved bond is mainly hydrophobic. 相似文献
3.
PCR Amplification of the Gene acmA Differentiates Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris 总被引:1,自引:0,他引:1 下载免费PDF全文
Sonia Garde Mar Babin Pilar Gaya Manuel Nuez Margarita Medina 《Applied microbiology》1999,65(11):5151-5153
The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment. 相似文献
4.
W. Bockelmann V. Monnet A. Geis M. Teuber J. C. Gripon 《Applied microbiology and biotechnology》1989,31(3):278-282
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris. 相似文献
5.
S Garde M Babin P Gaya M Nu?ez M Medina 《Applied and environmental microbiology》1999,65(11):5151-5153
The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment. 相似文献
6.
Akyol I 《Acta biologica Hungarica》2007,58(1):105-114
Lactococcus lactis has two essential ribonucleotide reductases for DNA biosynthesis and repair which are affected in the presence or absence of oxygen. Expression of glutaredoxin like protein (NrdH), the hydrogen donor for ribonucleotide reductase, was found to be regulated by the FNR like proteins (FlpA and FlpB). Proteomics study demonstrated that expression level of NrdH significantly decreased in the flpA and flpAB deletion mutants. The nrdH gene is located in an nrdHIEF operon and encoding the NrdEF ribonucleotide reductase, which is active under aerobic and anaerobic conditions. Regulation of expression of the nrdHIEF operons was investigated using beta-galactosidase as a reporter gene. The 588 bp fragment containing the nrdH promoter and gene cloned into the pORI vector immediately upstream of a promoterless lacZ gene. Constructed plasmid was transferred into wild type (MG1363), single mutant (flpA orflpB) and double mutant (flpAB). Aerobically, nrdH promoter activity is 15-fold higher than anaerobic expression. 相似文献
7.
J M Feirtag J P Petzel E Pasalodos K A Baldwin L L McKay 《Applied and environmental microbiology》1991,57(2):539-548
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth. 相似文献
8.
We report the complete genome sequence of Lactococcus lactis subsp. cremoris A76, a dairy strain isolated from a cheese production outfit. Genome analysis detected two contiguous islands fitting to the L. lactis subsp. lactis rather than to the L. lactis subsp. cremoris lineage. This indicates the existence of genetic exchange between the diverse subspecies, presumably related to the technological process. 相似文献
9.
Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis. 总被引:3,自引:3,他引:3 下载免费PDF全文
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth. 相似文献
10.
Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris 总被引:2,自引:0,他引:2
Nomura M Kobayashi M Ohmomo S Okamoto T 《Applied and environmental microbiology》2000,66(5):2235-2237
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein. 相似文献
11.
Bacteriophage receptors of Lactococcus lactis subsp. 'diacetylactis' F7/2 and Lactococcus lactis subsp. cremoris Wg2-1 总被引:2,自引:0,他引:2
Bacteriophage P008 revealed irreversible and uniform adsorption to cell walls of L. lactis subsp. 'diacetylactis' F7/2, whereas phage P127 adsorbed reversibly to a limited number of receptor sites on cell walls of L. lactis subsp. cremoris Wg2-1. Neither extraction of lipids, cell wall- and membrane-teichoic acids nor enzymatic degradation of proteins altered the binding efficiencies of both cell wall fractions. However, phage binding was inhibited, when cell walls were subjected to lysozyme, metaperiodate, or acid treatments. This reflects that a carbohydrate component embedded in the peptidoglycan matrix is part of the phage receptors of strains F7/2 and Wg2-1. 相似文献
12.
Inactivation of the Glutamate Decarboxylase Gene in Lactococcus lactis subsp. cremoris 总被引:1,自引:0,他引:1 下载免费PDF全文
Masaru Nomura Miho Kobayashi Sadahiro Ohmomo Takashi Okamoto 《Applied microbiology》2000,66(5):2235-2237
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein. 相似文献
13.
6种区分乳酸乳球菌乳酸亚种和乳酸乳球菌乳脂亚种的分子生物学方法比较 总被引:1,自引:0,他引:1
【目的】比较并评价6种分子生物学技术对乳酸乳球菌乳酸亚种(Lactococcus lactis subsp.lactis)和乳酸乳球菌乳脂亚种(Lactococcus lactis subsp.cremoris)的区分效果。【方法】采用16S rRNA基因序列分析技术,16S-23S rRNA间区序列多态性分析技术,变性梯度凝胶电泳技术(DGGE),随机扩增多态性分析技术(RAPD),重复基因外回文序列分析技术(rep-PCR)和限制性酶切片段多态性分析技术(RFLP)对4株Lactococcus lactis subsp.lactis和Lactococcus lactis subsp.cremoris参考菌株进行了区分,并对这6种方法的区分效果进行了比较评价。【结果】16S rRNA基因序列分析技术,16S-23S rRNA间区序列多态性分析技术无法区分Lactococcus lactis subsp.lactis和Lactococcus lactis subsp.cremoris,而其余4种技术可以实现区分。【结论】变性梯度凝胶电泳(DGGE),随机扩增多态性分析技术(RAPD)耗时短,操作简单,试验结果准确稳定,更适合Lactococcus lactis subsp.lactis和Lactococcus lactis subsp.cremoris的快速准确区分。 相似文献
14.
Lysis of Lactococcus lactis subsp. cremoris SK110 and Its Nisin-Immune Transconjugant in Relation to Flavor Development in Cheese 总被引:1,自引:0,他引:1 下载免费PDF全文
Wilco Meijer Bert van de Bunt Marja Twigt Boudewijn de Jonge Gerrit Smit Jeroen Hugenholtz 《Applied microbiology》1998,64(5):1950-1953
To develop a nisin-producing cheese starter, Lactococcus lactis subsp. cremoris SK110 was conjugated with transposon Tn5276-NI, which codes for nisin immunity but not for nisin production. Cheese made with transconjugant SK110::Tn5276-NI as the starter was bitter. The muropeptide of the transconjugant contained a significantly greater amount of tetrapeptides than the muropeptide of strain SK110, which could have decreased the susceptibility of the cells to lysis and thereby the release of intracellular debittering enzymes. 相似文献
15.
Mechanism of Proteinase Release from Lactococcus lactis subsp. cremoris Wg2 总被引:3,自引:8,他引:3 下载免费PDF全文
The procedure generally used for the isolation of extracellular, cell-associated proteinases of Lactococcus lactis species is based on the release of the proteinases by repeated incubation and washing of the cells in a Ca2+-free buffer. For L. lactis subsp. cremoris Wg2, as many as five incubations for 30 min at 29°C are needed in order to liberate 95% of the proteinase. Proteinase release was not affected by chloramphenicol, which indicates that release is not the result of protein synthesis during the incubations. Ca2+ inhibited, while ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) stimulated, proteinase release from the cells. The pH optimum for proteinase release ranged between 6.5 and 7.5, which was higher than the optimum pH of the proteinase measured for casein hydrolysis (i.e., 6.4). Treatment of cells with the serine proteinase inhibitor phenylmethylsulfonyl fluoride prior to the incubations in Ca2+-free buffer reduced the release of the proteinase by 70 to 80%. The residual proteinase remained cell associated but could be removed by the addition of active L. lactis subsp. cremoris Wg2 proteinase. This suggests that proteinase release from cells of L. lactis subsp. cremoris Wg2 is the result of autoproteolytic activity. From a comparison of the N-terminal amino acid sequence of the released proteinase with the complete amino acid sequence determined from the nucleotide sequence of the proteinase gene, a protein of 180 kilodaltons would be expected. However, a proteinase with a molecular weight of 165,000 was found, which indicated that further hydrolysis had occurred at the C terminus. 相似文献
16.
Fred A. Exterkate Marian de Jong Gerrie J. C. M. de Veer Ronald Baankreis 《Applied microbiology and biotechnology》1992,37(1):46-54
Summary One single, cytosolic aminopeptidase (AP N, EC 3.4.11.2) is found to be responsible for both leucyl-(leucylAP) and lysylaminopeptidese (lysylAP) activity detectible with whole cells of Lactococcus lactis subsp. cremoris strain HP. The existence of a cell-envelope-located form of this enzyme could be excluded. No restriction on the activity of the enzyme is imposed by the cell membrane if leucine-p-nitroanilide is used as the substrate; with lysine-p-nitroanilide the activity is highly cryptic. The enzyme has been purified and characterized. It is a metalloaminopeptidase with a molecular mass of 95 kDa. Co2+ appears to be the most potent ion to (re)activate the enzyme; Zn2+ and Mn2+ are less effective. The AP N releases the positively charged amino acids and several uncharged (including proline) from the N-terminus. Ammonium salts affect the preference of the enzyme with respect to the N-terminal residue. A preferential interaction of the ammonium ion with an essential cation binding site seems to be responsible for the inhibition of lysylAP activity.Trainee from the Laboratory School Friesland, Leeuwarden, The Netherlands
Offprint requests to: F. A. Exterkate 相似文献
17.
Characterization of the Highly Autolytic Lactococcus lactis subsp. cremoris Strains CO and 2250 下载免费PDF全文
Two highly autolytic Lactococcus lactis subsp. cremoris strains (CO and 2250) were selected and analyzed for their autolytic properties. Both strains showed maximum lysis when grown in M17 broth containing a limiting concentration of glucose (0.4 to 0.5%) as the carbohydrate source. Lysis did not vary greatly with pH or temperature but was reduced when strains were grown on lactose or galactose. Growth in M17 containing excess glucose (1%) prevented autolysis, although rapid lysis of L. lactis subsp. cremoris CO did occur in the presence of 1% glucose if sodium fluoride (an inhibitor of glycolysis) was added to the medium. Maximum cell lysis in a buffer system was observed early in the stationary phase, and for CO, two pH optima were observed for log-phase and stationary-phase cells (6.5 and 8.5, respectively). Autolysins were extracted from the cell wall fraction of each strain by using either 4% sodium dodecyl sulfate (SDS), 6 M guanidine hydrochloride, or 4 M lithium chloride, and their activities were analyzed by renaturing SDS-polyacrylamide gel electrophoresis on gels containing Micrococcus luteus or L. lactis subsp. cremoris CO cells as the substrate. More than one lytic band was observed on each substrate, with the major band having an apparent molecular mass of 48 kDa for CO. Each lytic band was present throughout growth and lysis. These results suggest that at least two different autolytic enzymes are present in the autolytic L. lactis subsp. cremoris strains. The presence of the lactococcal cell wall hydrolase gene, acmA (G. Buist, J. Kok, K. J. Leenhouts, M. Dabrowska, G. Venema, and A. J. Haandrikman, J. Bacteriol. 177:1554-1563, 1995), in strains 2250 and CO was confirmed by Southern hybridization. Analysis of an acmA deletion mutant of 2250 confirmed that the gene was involved in cell separation and had a role in cell lysis. 相似文献
18.
The exopolysaccharide (EPS) "viilian" was isolated from a large-batch fermentation of Lactococcus lactis subsp. cremoris SBT 0495. After applying a newly developed purification procedure, pure viilian with a weight-averaged molar mass of 2.64 x 10(3) kg/mol was obtained in a yield of 0.6 g/L culture broth. The native EPS, as well as lower molar mass fractions obtained by sonication of the native polymer, were studied by capillary viscometry and size-exclusion chromatography (SEC) coupled to multiangle laser light scattering detection (MALLS). From the viscosity data at various ionic strengths, we extracted a Mark-Houwink-Kuhn-Sakurada exponent a = 0.79, and a Smidsrod B value of 0.03. By application of the Hearst, Bohdanecky, and Odijk models for stiff polymer coils, in connection to the experimental viscosity data, we established the characteristic ratio to be C(infinity) = 44 and the intrinsic persistence length q(0) = 11.5 nm. The rms radii of gyration predicted from each of the models were in good agreement with the experimental radii (e.g., (1/2)(w) = 162 nm for native viilian in 0.2M NaNO(3)), as determined by SEC-MALLS. In addition, the Odijk model predicts correct ionic strength-linear charge density dependence of the rms radius of gyration. From the combined viscosity and SEC-MALLS experiments we concluded that, in dilute aqueous solutions, viilian behaves as an intermediately stiff, random coil polyelectrolyte system.Copyright 2000 John Wiley & Sons, Inc. 相似文献
19.
S.-Q. Liu R. V. Asmundson P. K. Gopal R. Holland V. L. Crow 《Applied and environmental microbiology》1998,64(6):2111-2116
The influence of reduced water activity (aw) on lactose metabolism by Lactococcus lactis subsp. cremoris 2254 and 2272 was studied at different pH values. In control incubations (aw, 0.99) with nongrowing cells in pH-controlled phosphate buffer, the levels of carbon recovered as l-(+)-lactate were 92% at pH 6.1 and 5.3 and 78% at pH 4.5. However, the levels of recovery decreased to ∼50% at all pH values tested when the aw was 0.88 (with glycerol as the humectant). When growing cells in broth controlled at pH 6.3 were used, a reduction in the aw from 0.99 to 0.96 resulted in a decrease in the level of lactose carbon recovered as l-(+)-lactate from 100 to 71%. Low levels of l-(+)-lactate carbon recovery (<50%) were also observed with cells resuspended in pH-uncontrolled reconstituted skim milk at aw values of 0.99 and 0.87 and in young cheese curds. The missing lactose carbon could not be accounted for by acetate, ethanol, formate, acetaldehyde, or pyruvate. Attempts were made to determine where the missing lactose carbon was diverted to under the stress conditions used. Some of the missing lactose carbon was recovered as galactose (0.1 to 2.5 mM) in culture supernatants. Decreasing either the aw or the pH resulted in increased galactose accumulation by nongrowing cells; adjusting both environmental factors together potentiated the effect. The sensitivities of the two lactococcal strains tested were different; strain 2272 was more prone to accumulate galactose under stress conditions. A methyl pentose(s) and additional galactose were found in acid-hydrolyzed supernatants from cultures containing both growing and nongrowing cells, indicating that a saccharide(s) rich in these components was formed by lactococci under low-aw and low-pH stress conditions.Water activity (aw) affects the growth, physiology, and metabolism of microorganisms and their resistance to inimical agents (22, 54). A number of microorganisms respond to a low-aw environment by intracellular accumulation of low-molecular-weight compatible solutes, such as amino acids, amino acid derivatives, trehalose, and polyols (6, 12). These compatible solutes restore turgor pressure and membrane tension to levels very similar to those that occur before osmotic upshift (12), preserve enzyme activity and protein stability, and maintain the integrity and stability of membranes and nucleic acids (6).There have been several reports concerning the accumulation of compatible solutes in lactic acid bacteria. Hutkins et al. (26) found that betaine was accumulated by an osmotolerant strain of Lactobacillus acidophilus, while Molenaar et al. (38) reported that Lactococcus lactis subsp. lactis ML3 contained high levels of proline or betaine when it was grown under osmotic stress conditions in complex media. Lactobacillus plantarum, however, accumulated not only betaine and proline, but also carnitine, glutamic acid, and trehalose when it was cultured in a complex medium having a reduced aw (29, 30, 36). The accumulation of betaine enhanced the survival of several lactic acid bacteria subjected to drying conditions (28, 30).The influence of reduced aw on substrate metabolism and product formation by lactic acid bacteria has received little attention. Optimal production of lactic acid by some dairy lactic acid bacteria occurs at aw values of 1.0 to 0.95, and production declines dramatically as the aw is decreased, which is consistent with growth inhibition, whereas diacetyl production by some lactic acid bacteria increases with decreasing aw and optimal diacetyl production occurs at aw values of 0.95 to 0.97 (51, 52). Bassit et al. (1) studied the influence of aw on the metabolism of Streptococcus diacetylactis (now Lactococcus lactis subsp. lactis var. diacetylactis) and found that decreasing the aw decreased lactose consumption and lactic acid formation and inhibited growth. Blickstad (3) observed no significant variations in the formation of end products by two meat lactobacilli at different aw values (0.99 to 0.94).Lactose is the major carbohydrate present in milk and young cheeses, and metabolism of lactose by starters during curd manufacture and early ripening is important for acid development. The cheese aw decreases during manufacture and ripening as a result of dehydration, salting, and the production of water-soluble solutes from glycolysis, proteolysis, and lipolysis; the cheese aw values range from 0.70 for extrahard cheeses to 0.99 for fresh, soft cheeses, such as cottage cheese, while semihard cheeses have aw values of around 0.90 (33, 41). The cheese pH also decreases during manufacture and ripening (19). We describe here the influence of low aw values on lactose metabolism by both growing and nongrowing cells of Lactococcus lactis subsp. cremoris at different pH values in buffer, broth, and reconstituted skim milk (RSM) with and without pH control. Cheese experiments to determine lactose utilization during ripening were also linked with our in vitro studies. 相似文献
20.
Autoproteolysis of the Extracellular Serine Proteinase of Lactococcus lactis subsp. cremoris Wg2 总被引:1,自引:3,他引:1 下载免费PDF全文
The molecular masses of purified extracellular serine proteinase of a number of Lactococcus lactis strains vary significantly, and these molecular mass values do not correspond to the values estimated on the basis of genetic data. The discrepancies can only partially be explained by N-terminal processing during maturation of the precursor enzyme and by C-terminal cleaving during the release from the cell envelope. With a monoclonal antibody that binds in the active site region of the L. lactis proteinase, the processing of the released proteinase was followed. At 30°C the proteinase was degraded with a concomitant loss of β-casein hydrolytic activity. In the presence of CaCl2, proteinase degradation was inhibited, and new degradation products were detected. The specific serine proteinase inhibitors phenylmethylsulfonyl fluoride and diisopropylfluorophosphate also inhibited proteinase degradation. Two major high-molecular-mass proteinase fragments (165 and 90 kDa) were found to have the same N-terminal amino acid sequence as the mature proteinase, i.e., [Asp-1-Ala-2-Lys-3-Ala-4-Asn-5-Ser-6, indicating that both fragments were formed by cleavage at the C terminus. The N terminus of a proteinase fragment with low molecular mass (58 kDa) started with Gln-215. In this fragment part of the active site region was eliminated, suggesting that it is proteolytically inactive. Unlike larger fragments, this 58-kDa fragment remained intact after prolonged incubations. These results indicate that autoproteolysis of the L. lactis subsp. cremoris Wg2 proteinase ultimately leads to inactivation of the proteinase by deletion of the active site region. 相似文献