首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tn10 tet operator mutations affecting Tet repressor recognition.   总被引:4,自引:1,他引:4       下载免费PDF全文
The effect of single base pair alterations of the Tn10 encoded tet operator on recognition of Tet repressor was studied in vivo using a repressor titration system and in vitro by dissociation rate determinations of the respective complexes. Both methods reveal that the two operators, O1 and O2, which are in a tandem arrangement in the wild type, are recognized with a two-fold different affinity when separated. Studies on synthetic operator sequences indicate that the Tet repressor binds with higher affinity to the non-palindromic O2 wildtype than to the respective palindromic sequences. The in vivo repressor titration system links the expression of lacZ to the affinity of tet operator to Tet repressor. It was used to isolate tet operator mutations with reduced affinity to the repressor. The in vivo and in vitro obtained results with these mutants agree quantitatively and indicate, that the GC base pairs at positions 2, 6, and 8 are involved in interaction with the Tet repressor. Their importance for recognition decreases in that order. Transitions at position 7 of the tet operator show smaller effects on recognition than transversions.  相似文献   

2.
Tet repressor binding induced curvature of tet operator DNA.   总被引:2,自引:1,他引:1       下载免费PDF全文
Tet repressor dimer binds to two tet operator sites spaced by 30 bp in the Tn10 encoded tet regulatory DNA. The effect of repressor binding on the gel mobility of circular permutated DNA fragments containing either one or both operator sequences is reported. The EcoRI induced bending of DNA is used to compare the results with other protein binding induced structural perturbations of DNA. Tet repressor bends a DNA fragment with a single tet operator to an angle of 42 degrees +/- 7 degrees. The apparent bend angle of DNA fragments containing the tandem tet operator arrangement occupied by two Tet repressor dimers turns out to be 52 degrees +/- 9 degrees. These results are interpreted with respect to the end to end distances of the bent DNA fragments. They indicate that either the intervening tet regulatory DNA between the operators or the bound operator sequences themselves contain additional perturbations from the canonical B-DNA structure. This finding is discussed in the light of previously obtained results from CD, neutron scattering, and electrooptical studies.  相似文献   

3.
Each of 22 amino acids in the proposed alpha-helix-turn-alpha-helix operator binding motif of the Tn10 encoded Tet repressor was replaced by alanine and one residue was replaced by valine to determine their role in tet operator recognition by a 'loss of contact' analysis with 16 operator variants. One class of amino acids consisting of T27 and R28 in the first alpha-helix and L41, Y42, W43 and H44 in the recognition alpha-helix are quantitatively most important for wild-type operator binding. These residues are probably involved in the structural architecture of the motif. A second class of residues is quantitatively less important for binding, but determines specificity by forming base pair specific contacts to three positions in tet operator. This property is most clearly demonstrated for Q38 and P39 and to a lesser extent for T40 at the N-terminus of the recognition alpha-helix. The contacted operator base pairs indicate that the N-terminus of the recognition alpha-helix is located towards the palindromic center in the repressor-operator complex. Although the orientation of the recognition alpha-helix in the Tet repressor-tet operator complex is inversed as compared with the lambda- and 434 repressor-operator complexes, the reduced operator binding of the TA27 mutation in the first alpha-helix suggests that the hydrogen bonding networks connecting the two alpha-helices may be similar in these proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Saturation mutagenesis of Tn10-encoded tet operator O1 was performed by chemical synthesis of 30 sequence variants yielding all possible point mutations of an operator half side. Their effect on Tet repressor binding was scored by an in-vivo repressor titration system. Tet repressor affinities of selected operator mutants were further characterized in vitro by dissociation rate measurements. The O1 sequence spans 19 base-pairs. Out of these, all 18 palindromic base-pairs are involved in Tet repressor recognition. The central base-pair does not contribute to sequence-specific binding of Tet repressor. At position 1 a pyrimidine residue is sufficient for maximal affinity to the repressor. At positions 2, 3 and 4, each mutation reduces repressor binding at least tenfold. Mutations at positions 5, 6, 7, 8 and 9 result in less drastic reductions of Tet repressor binding. Differential effects of mutations at a given position are used to deduce the chemical functions contacted by Tet repressor. The T.A to A.T transversion at position 9 increases Tet repressor affinity slightly, while all other mutations decrease repressor binding. The increased affinity of the wild-type tet operator O2 compared to wild-type O1 results from the addition of two favorable transversions at positions +/- 9 and an unfavorable T.A to C.G transition at position -7. Deletion or palindromic doubling of the central base-pair of the O1 palindrome reveals that the wild-type spacing of both operator half sides is crucial for efficient Tet repressor binding.  相似文献   

5.
An engineered Tn10-encoded Tet repressor, bearing a single Trp residue at position 43, in the putative alpha-helix-turn-alpha-helix motif of the operator binding domain, was studied by time-resolved fluorescence and anisotropy. Fluorescence intensity decay data suggested the existence of two classes of Trp-43, defined by different lifetimes. Analysis of anisotropy data were consistent with a model in which each class was defined by a different lifetime, rotational correlation time, and fluorescence emission maximum. The long-lifetime class had a red-shifted spectrum, similar to that of tryptophan zwitterion in water, and a short rotational correlation time. In contrast, the spectrum of the short-lifetime class was blue-shifted 10 nm compared to that of the long-lifetime class. Its correlation time was similar to that of the protein, which showed that Trp in this class was entirely constrained. Trp in this latter class could not be quenched by iodide, whereas most of the long-lifetime class was easily accessible. Presence of disruptive agents, such as 1 M GuCl or 3 M KCl, did not alter markedly the lifetimes but increased the weight of the short-lifetime component. In the same time, the rotational correlation time of this component was dramatically reduced. Taken together, our data suggest that the long-lifetime class could correspond to the tryptophan residues exposed to solvent whereas the short-lifetime class would correspond to the tryptophan residues embedded inside the hydrophobic core holding the helix-turn-helix motif. Destabilization of hydrophobic interactions would lead to an increase in the weight of the latter class for entropic reasons. Analysis of the fluorescence parameters of Trp-43 could provide structural information on the operator binding domain of Tet repressor.  相似文献   

6.
The N-terminal residues preceding the alpha-helix-turn-alpha-helix motif on the Tn10 Tet repressor protein were probed by oligonucleotide-directed deletion mutagenesis for their role in protein activity. All deletion mutants showed decreased repression in vivo, emphasizing the importance of the N terminus for tet operator binding. Only two of the mutants, TetR delta 2-23 and TetR delta 3-8 displayed a reduced intracellular protein level. The remaining deletion mutants showed either reduced binding to tet operator and inducibility by tetracycline or transdominance. We conclude that these deletions do not affect stability and overall protein structure. DNA binding activities of residue-wise increasing deletions, TetR delta 9 through TetR delta 9-13, reveal a pattern consistent with an alpha-helical structure of the affected residues. This conclusion is supported by the helical wheel projection and the hydrophobic moment profile calculated for the protein segment ranging from residues S7-V20. We propose that these residues form an amphipathic alpha-helix which packs closely against the alpha-helix-turn-alpha-helix motif and is essential for Tet repressor activity. The residues preceding this putative alpha-helix contribute to DNA binding, but no direct interactions with base pairs of tet operator were revealed in a loss of contact analysis. Individual mutation of the 4 charged residues to alanine at the N terminus shows that no single residue can account for the reduction in repression observed for the deletion mutants.  相似文献   

7.
8.
The synthesis of 8-azido-2'-deoxyadenosine-5'-triphosphate is described. The photoreactive dATP analog was characterized by thin layer chromatography, proton resonance spectroscopy, infrared spectroscopy and UV spectroscopy. Its photolysis upon UV irradiation was studied. After incorporation of this dATP analog into DNA containing the tet operator sequence the investigation of the interactions between tet operator DNA and Tet repressor protein by UV photocross-linking becomes possible. Photocross-linking of protein to DNA was demonstrated by the reduced migration of the DNA in SDS polyacrylamide gel electrophoresis. Addition of the inducer tetracycline prior to UV irradiation significantly reduces the DNA-protein cross-linking rate. The long wave UV light applied here does not significantly alter the DNA or the protein under the photocross-linking conditions.  相似文献   

9.
We have analyzed the DNA binding properties of Tet-repressor mutants with single amino acid residue replacements at eight positions within the alpha-helix-turn-alpha-helix DNA-binding motif. A saturation mutagenesis of Gln38, Pro39, Thr40, Tyr42, Trp43 and His44 in the second alpha-helix was performed; in addition, several substitutions of Thr27 and Arg28 in the first alpha-helix were constructed. The abilities of these mutant repressors to bind a set of 16 operator variants were determined and revealed 23 new binding specificities. All repressor mutants with DNA-binding activity were inducible by tetracycline, while mutants lacking binding activity were trans-dominant over the wild-type. All mutant proteins were present at the same intracellular steady-state concentrations as the wild-type. These results suggest the structural integrity of the mutant repressors. On the basis of the new recognition specificities, five contacts between a repressor monomer and each operator half-site and the chemical nature of these repressor-operator interactions are proposed. We suggest that Arg28 contacts guanine of the G.C base-pair at operator position 2 with two H-bonds, Gln38 binds adenine of the A.T base-pair at position 3 with two H-bonds, and the methyl group of Thr40 participates in a van der Waals' contact with cytosine of the G.C base-pair at position 6 of tet operator. A previously unrecognized type of interaction is proposed for Pro39, which inserts its side-chain between the methyl groups of the thymines of T.A and A.T base-pairs at positions 4 and 5. Computer modeling of these proposed contacts reveals that they are possible using the canonical structures of the helix-turn-helix motif and B-DNA. These contacts suggest an inverse orientation of the Tet repressor helix-turn-helix with respect to the operator center as compared with non-inducible repressor-operator complexes, and are supported by similar contacts of other repressor-operator complexes.  相似文献   

10.
Steady-state fluorescence quenching and time-resolved measurements have been performed to resolve the fluorescence contributions of the two tryptophan residues, W43 and W75, in the subunit of the homodimer of the Tet repressor fromEscherichia coli. The W43 residue is localized within the helix-turn-helix structural domain, which is responsible for sequence-specific binding of the Tet repressor to thetet operator. The W75 residue is in the protein matrix near the tetracycline-binding site. The assignment of the two residues has been confirmed by use of single-tryptophan mutants carrying either W43 or W75. The FQRS (fluorescence-quenching-resolved-spectra) method has been used to decompose the total emission spectrum of the wild-type protein into spectral components. The resolved spectra have maxima of fluorescence at 349 and 324 nm for the W43 and W75 residues, respectively. The maxima of the resolved spectra are in excellent agreement with those found using single-tryptophan-containing mutants. The fluorescence decay properties of the wild type as well as of both mutants of Tet repressor have been characterized by carrying out a multitemperature study. The decays of the wild-type Tet repressor and W43-containing mutant can be described as being of double-exponential type. The W75 mutant decay can be described by a Gaussian continuous distribution centered at 5.0 nsec with a bandwidth equal to 1.34 nsec. The quenching experiments have shown the presence of two classes of W43 emission. One of the components, exposed to solvent, has a maximum of fluorescence emission at 355 nm, with the second one at about 334 nm. The red-emitting component can be characterized by bimolecular-quenching rate constant,k q equal to 2.6×109, 2.8×109, and 2.0×109 M?1 sec?1 for acrylamide, iodide, and succinimide, respectively. The bluer component is unquenchable by any of the quenchers used. The W75 residue of the Tet repressor has quenching rate constant equal to 0.85×109 and 0.28 × 109 M?1 sec?1 for acrylamide and succinimide, respectively. These values indicate that the W75 is not deeply buried within the protein matrix. Our results indicate that the Tet repressor can exist in its ground state in two distinct conformational states which differ in the microenvironment of the W43 residue.  相似文献   

11.
The Tn10 derived Tet repressor contains an amino acid segment with high homology to the alpha-helix-turn-alpha-helix motif (HTH) of other DNA binding proteins. The five most conserved amino acids in HTH are probably involved in structural formation of the motif. Their functional role was probed by saturation mutagenesis yielding 95 single amino acid replacement mutants of Tet repressor. Their binding efficiencies to tet operator were quantitatively determined in vivo. All functional mutants contain amino acid substitutions consistent with their proposed role in a HTH. In particular, only the two smallest amino acids (serine, glycine) can substitute a conserved alanine in the proposed first alpha-helix without loss of activity. The last position of the first alpha-helix, the second position in the turn, and the fourth position in the second alpha-helix require mostly hydrophobic residues. The proposed C-terminus of the first alpha-helix is supported by a more active asparagine compared to glutamine replacement mutant of the wt leucine residue. The turn is located close to the protein surface as indicated by functional lysine and arginine replacements for valine. A glycine residue at the first position in the turn can be replaced by any amino acid yielding mutants with at least residual tet operator affinity. A structural model of the HTH of Tet repressor is presented.  相似文献   

12.
The Tn10-encoded Tet repressor contains two tryptophan residues at positions 43 and 75. The typical tryptophan fluorescence is decreased upon binding of tet operator. The Tet repressor gene was engineered to replace either or both of the Trp codons by Phe codons. The resulting single tryptophan mutants are called F43 and F75 and the double mutant F43F75. The mutant proteins were purified to homogeneity. They recognize tet operator DNA only in the absence of the inducer tetracycline, indicating an intact tertiary structure of the engineered proteins. F75 and wild-type bind tet operator with the same association constant. The association constants of F43 and F43F75 with tet operator are about 3 orders of magnitude smaller. This indicates that Trp43 is important for tet operator recognition. Trp43 fluorescence is completely quenched in the complex with tet operator DNA while Trp75 remains unaffected. Binding to nonspecific DNA leads only to a 40% decrease of Trp43 fluorescence. This is interpreted as the contribution of the changed environment while the complete quench reflects a tight sequence-specific contact of tryptophan 43 to tet operator DNA. Trp43 is solvent-exposed, while Trp75 is buried in the hydrophobic interior of the protein. These results are discussed in light of the alpha-helix turn-alpha-helix DNA binding motif deduced from homology to other repressor proteins.  相似文献   

13.
To learn about the correlation between allostery and ligand binding of the Tet repressor (TetR) we analyzed the effect of mutations in the DNA reading head-core interface on the effector specific TetR(i2) variant. The same mutations in these subdomains can lead to completely different activities, e.g. the V99G exchange in the wild-type leads to corepression by 4-ddma-atc without altering DNA binding. However, in TetR(i2) it leads to 4-ddma-atc dependent repression in combination with reduced DNA binding in the absence of effector. The thermodynamic analysis of effector binding revealed decreased affinities and positive cooperativity. Thus, mutations in this interface can influence DNA binding as well as effector binding, albeit both ligand binding sites are not in direct contact to these altered residues. This finding represents a novel communication mode of TetR. Thus, allostery may not only operate by the structural change proposed on the basis of the crystal structures.  相似文献   

14.
We analysed the conformational states of free, tet operator-bound and anhydrotetracycline-bound Tet repressor employing a Trp-scanning approach. The two wild-type Trp residues in Tet repressor were replaced by Tyr or Phe and single Trp residues were introduced at each of the positions 162-173, representing part of an unstructured loop and the N-terminal six residues of alpha-helix 9. All mutants retained in vivo inducibility, but anhydrotetracycline-binding constants were decreased up to 7.5-fold when Trp was in positions 169, 170 and 173. Helical positions (168-173) differed from those in the loop (162-167) in terms of their fluorescence emission maxima, quenching rate constants with acrylamide and anisotropies in the free and tet operator-complexed proteins. Trp fluorescence emission decreased drastically upon atc binding, mainly due to energy transfer. For all proteins, either free, tet operator bound or anhydrtetracycline-bound, mean fluorescence lifetimes were determined to derive quenching rate constants. Solvent-accessible surfaces of the respective Trp side chains were calculated and compared with the quenching rate constants in the anhydrotetracycline-bound complexes. The results support a model, in which residues in the loop become more exposed, whereas residues in alpha-helix 9 become more buried upon the induction of TetR by anhydrotetracycline.  相似文献   

15.
B Hecht  G Müller    W Hillen 《Journal of bacteriology》1993,175(4):1206-1210
We have developed a new genetic selection system for Tet repressor mutations with a noninducible phenotype for tetracycline (TetRs). Extensive chemical mutagenesis of tetR yielded 93 single-site Tet repressor mutations. They map from residue 23 preceding the alpha-helix-turn-alpha-helix operator binding motif to residue 196 close to the C terminus of the repressor. Thirty-three of the mutations are clustered between residues 95 and 117, and another 27 are clustered between residues 131 to 158. Several of the mutants were characterized quantitatively in vivo for induction by tetracycline and anhydrotetracycline. While all of these are severely reduced in tetracycline-mediated induction, only some of them are affected for anhydrotetracycline-mediated induction.  相似文献   

16.
The structural changes of the tet operator DNA upon binding of the TET repressor protein are examined by circular dichroism. For this purpose a 70 bp DNA fragment was prepared which contains both tet operators. About 67% of the base pairs of this DNA are involved in specific interaction with the TET repressor. A rather large change in the CD of the DNA is induced by binding of the TET repressor. The shape of the CD difference spectrum is similar to the respective difference found for the lac operator DNA upon complex formation with the lac repressor. However, the effect induced by the TET repressor on tet operator DNA seems to comprise both the specific and non-specific effect of the lac repressor on the structure of DNA [Culard, F. and Maurizot, J.C. (1981) Nucl. Acids Res. 9, 5157-5184]. Specificity of binding is confirmed by the lack of any effect of the TET repressor on the CD of a 95 bp lac operator containing DNA fragment, by the reduced mobility of TET repressor.tet operator complexes on polyacrylamide gels under CD conditions, and by a titration experiment of tet operator DNA with TET repressor employing the CD change. The latter experiment reveals a stoichiometry of four TET repressors per tet operon control region.  相似文献   

17.
Tet repressor mutants with a shifted effector specificity, preference for a mutant operator sequence or reversion of activity were combined to construct variants bearing two or three phenotypic alterations. TetR alleles with combinations of altered operator and effector specificities can be created by merging the respective residues in a single polypeptide. The mutations giving rise to revTetR, on the other hand, show drastic influences on the ligand binding phenotypes when combined with respective alterations. One TetR variant displays all three phenotypic alterations and thus demonstrates the general possibility of implementing them in one protein.  相似文献   

18.
19.
We inserted the Tn10 tetracycline resistance determinant (tet) into the multicopy plasmid pACYC177, and we examined the phenotype of Escherichia coli K-12 strains harboring these plasmids. In agreement with others, we find that Tn10 tet exhibits a negative gene dosage effect. Strains carrying multicopy Tn10 tet plasmids are 4- to 12-fold less resistant to tetracycline than are strains with a single copy of Tn10 in the bacterial chromosome. In addition, we find that multicopy tet strains are 30- to 100-fold less resistant to the tetracycline derivative 5a,6-anhydrotetracycline than are single-copy tet strains. Multicopy tet strains are, in fact, 10- to 25-fold more sensitive to anhydrotetracycline than are strains that lack tet altogether. The hypersensitivity of multi-copy strains to anhydrotetracycline is correlated with the effectiveness of anhydrotetracycline as an inducer of tet gene expression, rather than its effectiveness as an inhibitor of protein synthesis. Anhydrotetracycline is 50- to 100-fold more effective than tetracycline as an inducer of tetracycline resistance and as an inducer of beta-galactosidase in strains that harbor tet-lac gene fusions. In contrast, anhydrotetracycline appears to be two- to fourfold less effective than tetracycline as an inhibitor of protein synthesis. Both anhydrotetracycline and tetracycline induce synthesis of tet polypeptides in minicells harboring multicopy tet plasmids. Differences between E. coli K-12 backgrounds influence the tetracycline and anhydrotetracycline sensitivity of multicopy strains; ZnCl2 enhances the tetracycline and anhydrotetracycline sensitivity of these strains two- to threefold. We propose that the overexpression of one or more Tn10 tet gene products inhibits the growth of multicopy tet strains and accounts for their relative sensitivity to inducers of tet gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号