首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Tissue glycogen contributes, maximally, only 10% of the respiratory fuel of the rat spleen slice in the absence of an added carbon source, and makes no significant contribution when glucose (3mM) is added. 2. The reserves of fatty acid in the form of triglyceride (35.5mumol of fatty acid/g dry wt. of tissue) fall by approx. 25% after incubation of spleen slices with or without added glucose for 2h, and , on this basis, account for 32% of the oxidative fuel. 3. In contrast, the total oxidative contribution of fatty acid reserves to the respiratory fuel, determined on the basis of inhibiton of respiration by 2-bromostearate, is 42-52%. This range includes tissue from both starved and well-fed animals and is not significantly altered by the presence of added glycose (3mM). 4. Large quantities of NH3 (31-35mumol//h per g dry wt. of tissue) are produced by spleen slices incubated in the absence of added substrates, and this value is suppressed by approx. 50% on incubation with glucose (3mM). Adenine nucleotide breakdown can account for only 17% of the total ammonia produced. 5. Individual free amino acid concentrations in spleen were determined, both in vivo and in slices before and after 60 min of incubation. Although the total free amino acid pool size increases by 45% during incubation, owing to protein breakdown, the tissue concentrations of aspartate, glutamate, glutamine and alanine do not increase. It is suggested that these amino acids areoxidized in a net sense to CO2 and water with the liberation of free NH3 via transamination reactions, glutaminase, the purine nucleotide cycle and the tricarboxylic acid cycle. 6. It is concluded that the normal endogenous metabolism of sliced rat spleen (43-52% due to lipids, 30% due to amino acids and 10% due to glycogen) is modified by added glycose only to the extent that glycogen oxidation and 50% of the contribtion made by ino acids are suppressed; endogenous lipid metabolism is unaffected.  相似文献   

2.
The experiments were carried out with washed human erythrocytes in order to study the effects of dibutyryl-cAMP (DB-cAMP) on glycolysis. 5 mM DB-cAMP significantly increases glucose consumption and lactate production in incubated erythrocytes. The cross-over plot of glycolytic intermediates shows that increased glycolysis is probably the result of activation of phosphofructokinase by DB-cAMP. Under the same condition DB-cAMP significantly protects the 2,3-diphosphoglycerate level in incubated erythrocytes.  相似文献   

3.
Net glucose uptake in a perfusion system including erythrocytes and isolated livers from fed rats was inhibited by N-acetylglucosamine (GlcNAc), a competitive inhibitor of glucokinase. Net glucose uptake also occurred in the system incorporating livers from 48-h fasted rats, but its inhibition by GlcNAc did not. This distinction could not be explained on the basis of a different sensitivity of glucokinase from fasted compared with fed rats to inhibition by GlcNAc. Nor could it be rationalized based on several other hepatic enzymes possibly involved in glucose utilization or production. Because erythrocytes were included in our system, other explanations were sought related to the total enzymic environment. The involvement of an indirect pathway including glycolysis of glucose to lactate in erythrocytes followed by conversion of this lactate to glucose-6-P and then glycogen in liver was considered. This pathway contributed no more than 17% to total net glucose uptake in the system incorporating livers from fed rats. This per cent contribution increased when hepatic glucokinase was reduced by fasting or through inhibition by GlcNAc. However, it was too small to explain observed overall rates of net glucose uptake. We propose that the presence of erythrocytes may also promote a greater net glucose uptake by the direct hepatic pathway. An enhanced inhibition of hepatic glucose-6-P hydrolysis by some intermediate metabolite generated in the presence of lactate infusion from erythrocytes may promote net glucose uptake independently of the mechanism of residual hepatic glucose phosphorylation. This may explain why we and others who have employed liver perfusion systems including erythrocytes have seen greater net glucose uptake than have workers using systems devoid of erythrocytes.  相似文献   

4.
Opossum erythrocytes filtered through cellulose columns were used to estimate their permeability to D-glucose and optimum inorganic phosphate requirement for D-glucose utilization at pH 7.4 and 8.1. D-Glucose readily penetrated opossum red cells; there was no measurable difference whether plasma or electrolyte solution served as the suspending medium. Optimum extracellular inorganic phosphate concentration for glucose utilization as indicated by red cell lactate production was pH-dependent, with a sharp optimum of 30 mmol/liter at pH 8.1. Whereas glucose, fructose, mannose, dihydroxyacetone, adenosine, and inosine were readily utilized at pH 7.4 and Pi 30 mmol/liter as shown by net lactate and ATP production by the red cells, galactose and ribose as substrates were not metabolized. In electrolyte, Pi 30 mmol/liter, and pH 7.4 glucose utilization by opossum red cells averaged 3.5 mumol, at pH 8.1, 9.5 mumol/ml cells/hr were utilized. Red cells suspended in leukocyte-free plasma utilized D-glucose at a rate of 3.0 mumol/ml/hr at pH 7.5. Seven percent of D-glucose flowed through the pentose phosphate pathway; this rate increased 11-fold by methylene blue stimulation. The amount of D-glucose recycled through the pentose phosphate pathway increased 300-fold in the presence of the redox dye.  相似文献   

5.
Glucose and glutamine utilization and production of glutamate and lactate were determined for up to 48 h in lymphocytes, monocytes and neutrophils cultured in medium rich in metabolites and vitamins. Glucose was utilized by the three cell types in culture in the following order: neutrophils > monocytes > lymphocytes, whereas lactate was produced in the order: monocytes > neutrophils > lymphocytes. The consumption of glucose followed the activity of glucose-6-phosphate dehydrogenase but it was not related to hexokinase activity. Glutamine was consumed by the three leukocyte types in culture as follows: neutrophils > lymphocytes > or = monocytes. The consumption of glutamine was not fully related to the activity of phosphate-dependent glutaminase. The production of glutamate was not remarkably different among the three cell types. For comparison, glutamine and glucose utilization and glutamate and lactate production were also evaluated using 1-h incubated leukocytes. Under this condition, only glucose or glutamine was added to the medium. Glucose was utilized as follows: neutrophils > monocytes > lymphocytes, whereas lactate was produced in the following order: monocytes > or = neutrophils > lymphocytes. Glutamine was consumed as follows: neutrophils > lymphocytes > monocytes, whereas glutamate was produced as follows: neutrophils > or = monocytes = lymphocytes. The ratio of the amount of glucose/glutamine consumed by 1-h incubated cells was 0.5 for neutrophils, 1.5 for monocytes, and 0.3 for lymphocytes. However, the three cell types cultured for 48 h utilized glucose to a much higher degree than glutamine. The ratio of the amount of glucose/glutamine utilized by the cultured cells was 8.9 for neutrophils, 16.4 for monocytes, and 6.7 for lymphocytes. These observations support the proposition that glutamine is required in much higher amounts than glucose to accomplish the total metabolic requirement of leukocytes. Under conditions closer to physiological when the availability of a variety of metabolites and vitamins is not restricted, glucose is the preferred substrate for lymphocytes, monocytes and neutrophils.  相似文献   

6.
Estimates of the quantitative contribution of adipose tissue to whole-body glucose metabolism, previously reported as 1-3%, have been revised to be on the order of 10-30%. These revised estimates come, in part, from a recognition that adipose tissue uses glucose to produce lactate and pyruvate, in addition to CO2 and triglycerides. Lactate production by adipose tissue is modulated in vitro by changes in glucose, insulin, and epinephrine concentrations. In vivo, lactate production is regulated acutely by the animal's nutritional state (fed or fasted) and chronically by the degree of obesity. A strong positive correlation exists between rat fat cell size and relative conversion of glucose to lactate (r = 0.89, P less than 0.001). Diabetes is also associated with markedly increased lactate production in adipocytes. Fat cells from obese or diabetic rats (or humans) can metabolize to lactate as much as 50-70% of the glucose taken up. From these recent studies, a picture is emerging in which the adipose organ may provide lactate for hepatic gluconeogenesis during fasting, and also lactate for hepatic glycogen synthesis after food ingestion. Modulation of adipocyte lactate production and contribution of adipose tissue lactate to the body's fuel economy in physiological and pathological states are the focus of this review.  相似文献   

7.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4 In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

8.
Human erythrocytes were loaded with homogeneous rat liver glucokinase by an encapsulation method based on hypotonic hemolysis and isotonic resealing. As assayed at 10 mM glucose, glucokinase and hexokinase activities in glucokinase-loaded erythrocytes were 218 and 384 nmol/min/gHb, respectively; whereas hexokinase activity in both intact and unloaded red cells, which contain no glucokinase activity, was about 400 nmol/min/gHb. No difference in the rate of lactate production from glucose anomers between intact and unloaded erythrocytes suggested that the encapsulation procedure itself did not affect glucose utilization in red cells. Alpha-anomeric preference in lactate production from glucose was observed in glucokinase-loaded erythrocytes, whereas the beta anomer of glucose was more rapidly utilized than the alpha anomer in intact and unloaded erythrocytes. The results indicate that the step of glucose phosphorylation determines the anomeric preference in glucose utilization by human erythrocytes, since glucokinase and hexokinase are alpha- and beta-preferential, respectively, in glucose phosphorylation.  相似文献   

9.
Syrian hamsters were used to study the effect of aging on brain slice respiration and metabolism. Young animals (average age 8 months) and old animals (average age 18 months) were incubated under standard conditions with the following parameters being measured: oxygen uptake, 14CO2 production, glucose utilization, lactate and pyruvate formation. No differences were found in the two groups. It is still very likely that subtle differences exist but can only be documented under conditions of metabolic stress.  相似文献   

10.
Fuel utilization in colonocytes of the rat.   总被引:5,自引:2,他引:3       下载免费PDF全文
In incubated colonocytes isolated from rat colons, the rates of utilization O2, glucose or glutamine were linear with respect to time for over 30 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 30 min. Glutamine, n-butyrate or ketone bodies were the only substrates that caused increases in O2 consumption by isolated incubated colonocytes. The maximum activity of hexokinase in colonic mucosa is similar to that of 6-phosphofructokinase. Starvation of the donor animal decreased the activities of hexokinase and 6-phosphofructokinase, whereas it increased those of glucose-6-phosphatase and fructose-bisphosphatase. Isolated incubated colonocytes utilized glucose at about 6.8 mumol/min per g dry wt., with lactate accounting for 83% of glucose removed. These rates were not affected by the addition of glutamine, acetoacetate or n-butyrate, and starvation of the donor animal. Isolated incubated colonocytes utilized glutamine at about 5.5 mumol/min per g dry wt., which is about 21% of the maximum activity of glutaminase. The major end-products of glutamine metabolism were glutamate, aspartate, alanine and ammonia. Starvation of the donor animal decreased the rate of glutamine utilization by colonocytes, which is accompanied by a decrease in glutamate formation and in the maximum activity of glutaminase. Isolated incubated colonocytes utilized acetoacetate at about 3.5 mumol/min per g dry wt. This rate was not markedly affected by addition of glucose or by starvation of the donor animal. When colonocytes were incubated with n-butyrate, both acetoacetate and 3-hydroxybutyrate were formed, with the latter accounting for only about 19% of total ketones produced.  相似文献   

11.
Glucose is an important fuel for rat brown adipose tissue in vivo and its utilization is highly sensitive to insulin. In this study, the different glucose metabolic pathways and their regulation by insulin and norepinephrine were examined in isolated rat brown adipocytes, using [6-14C]glucose as a tracer. Glucose utilization was stimulated for insulin concentrations in the range of 40-1000 microU/ml. Furthermore, the addition of adenosine deaminase (200 mU/ml) or adenosine (10 microM) did not alter insulin sensitivity of glucose metabolism. The major effect of insulin (1 mU/ml) was a respective 7-fold and 5-fold stimulation of lipogenesis and lactate synthesis, whereas glucose oxidation remained very low. The 5-fold stimulation of total glucose metabolism by 1 mU/ml of insulin was accompanied by an 8-fold increase in glucose transport. In the presence of norepinephrine (8 microM), total glucose metabolism was increased 2-fold. This was linked to a 7-fold increase of glucose oxidation, whereas lipogenesis was greatly inhibited (by 72%). In addition, norepinephrine alone did not modify glucose transport. The addition of insulin to adipocytes incubated with norepinephrine, induced a potentiation of glucose oxidation, while lipogenesis remained very low. In conclusion, in the presence of insulin and norepinephrine glucose is a oxidative substrate for brown adipose tissue. However the quantitative importance of glucose as oxidative fuel remains to be determined.  相似文献   

12.
The suitability of an established myogenic line (L6) for the study of skeletal muscle intermediary metabolism was investigated. Myoblasts were grown in tissue culture for ten days at which time they had differentiated into multinucleated myotubes. Myotube preparations were then incubated for up to 96 hours in 10 ml of Dulbecco's modified Eagle medium containing 10% fetal calf serum. Glucose was utilized at a nearly linear rate, 3.0 nmol/min/mg protein. Intracellular glucose was detectable throughout the incubation, even when medium glucose was as low as 16 mg%. During the initial 28 hours of incubation, when net lactate production was observed, only 35% of the glucose utilized was converted to lactate. Alanine was produced in parallel to lactate at an average rate of 0.6 nmol/min/mg protein. In concert with active glutamine utilization, high rates of ammoniagenesis were observed as medium glutamine decreased from 3.3 mM to 0.49 mM and medium ammonia increased from 2.3 mM to 6.2 mM, between zero time and 96 hours of incubation, respectively. The cells maintained stable ATP and citrate levels, and physiologic intracellular lactate/pyruvate ratios (10–24) throughout 96 hours of incubation. These results suggest (1) glucose utilization by skeletal muscle in tissue culture is limited by phosphorylation, not transport; (2) as much as 50% of glucose-derived pyruvate enters mitochondrial pathways; (3) glutamine carbon may be utilized simultaneously with glucose consumption and this process accounts for high rates of ammoniagenesis.  相似文献   

13.
H G Preuss  D M Roxe  E Bourke 《Life sciences》1987,41(14):1695-1702
We believe that two findings are interconnected and help to comprehend a major mechanism behind the regulation of renal ammonia production during acidosis. First, slices from acidotic compared to control and alkalotic rats produce more ammonia from glutamine. Second, inhibition of renal oxidative metabolism at various points by metabolic inhibitors augments slice ammoniagenesis. Based on this, our purpose was to determine whether enhanced renal ammoniagenesis during acidosis could occur through the same mechanism as the metabolic inhibitors. However, metabolic inhibitors (malonate; arsenite; 2,4-dinitrophenol) usually decrease while acidosis increases slice gluconeogenesis. There is one known exception. Fluorocitrate, which blocks citrate metabolism, simulates the acidotic condition by enhancing both ammonia and glucose production. Accordingly, a block of oxidative metabolism if located prior to citrate oxidation in the tricarboxylic acid cycle could theoretically augment ammoniagenesis during acidosis. Lactate, is a major renal fuel whose oxidative metabolism would be blocked by fluorocitrate. There, we concentrated on the effects of acidosis on lactate as well as glutamine metabolism. Lactate decarboxylation decreases in the face of increased glucose production during acidosis, and lactate inhibition of glutamine decarboxylation decreases in slices from acidotic rats. Also, we found lesser oxygen consumption in the presence of lactate by kidney slices from acidotic rats compared to control and alkalotic rats. We postulate that relatively less incorporation of lactate into the TCA cycle, causing decreased citrate formation and citrate oxidation during acidosis, contributes, at least in part, to acidotic adaptation of ammoniagenesis.  相似文献   

14.
1. Starvation did not affect the rates of glucose utilization or lactate formation by guinea-pig cerebral cortex slices. 2. Palmitate (1mm), butyrate (5mm) or acetoacetate (5mm) did not affect glucose utilization or lactate formation by cerebral cortex slices from guinea pigs starved for 48hr. 3. dl-beta-Hydroxybutyrate (10mm) increased the formation of lactate without affecting glucose utilization by cerebral cortex slices from guinea pigs starved for 48hr. This implies that beta-hydroxybutyrate decreased the rate of glucose oxidation. 4. Metabolism of added ketone bodies can account for 20-40% of observed rates of oxygen consumption. 5. Lactate or pyruvate (5mm) decreased the rates of glucose utilization by guinea-pig cerebral cortex slices.  相似文献   

15.
Changes in several parameters involved in the control of metabolism were correlated with changes in glucose utilization in rat brain slices incubated under conditions which reduced glucose oxidation by 40 to 70%. The parameters included: the concentrations of ATP, ADP, AMP, and the adenylate energy charge; the cytoplasmic oxidation-reduction state ([NAD+]/[NADH]), determined from the [pyruvate]/[lactate] equilibrium; the mitochondrial oxidation-reduction state, determined from the [NH4+] ]2-oxoglutarate]/[glutamate] Equilibrium; the cytoplasmic and mitochondrial oxidation-reduction potentials (in volts), calculated from the respective [NAD+]/ [NADH] ratios using the Nernst equation; and the difference between the cytoplasmic and mitochondrial [NAD+]/[NADH] potentials. The conversion of [3, 4-14C] glucose to 14CO2 and of [U-14C] glucose to acetylcholine and to lipids, proteins, and nucleic acids by the brain slices were also determined. The values obtained by subtracting the mitochondrial from the cytoplasmic [NAD+1/[NADH] potentials correlated more closely with glucose utilization than did other parameters, under the conditions studied. For the synthesis of acetylcholine, the correlation coefficient was 0.96, and for the production of 14CO2 from [3, 4-14C] glucose it was 0.82.  相似文献   

16.
1. Sodium dichloroacetate (1mM) inhibited glucose production from L-lactate in kidney-cortex slices from fed, starved or alloxan-diabetic rates. In general gluconeogenesis from other substrates was no inhibited. 2. Sodium dichloracetate inhibited glucose production from L-lactate but no from pyruvate in perfused isolated kidneys from normal or alloxan-diabetic rats. 3. Sodium dichloroacetate is an inhibitor of the pyruvate dehydrogenase kinase reaction and it effected conversion of pyruvate dehydrogenase into its its active (dephosphorylated) form in kidney in vivo. In general, pyruvate dehydrogenase was mainly in the active form in kidneys perfused or incubated with L-lactate and the inhibitory effect of dichloroacetate on glucose production was not dependent on activation of pyruvate dehydrogenase. 4. Balance data from kidney slices showed that dichloroacetate inhibits lactate uptake, glucose and pyruvate production from lactate, but no oxidation of lactate. 5. The mechanism of this effect of dichloroactetate on glucose production from lactate has not been fully defined, but evidence suggests that it may involve a fall in tissue pyruvate concentration and inhibition of pyruvate carboxylation.  相似文献   

17.
Synaptosomes were isolated from rat cerebral cortex and incubated with [U-14C]-, [1-14C]- or [6-14C]glucose. Glucose utilization and the metabolic partitioning of glucose carbon in products were determined by isotopic methods. From the data obtained a carbon balance was constructed, showing lactate to be the main product of glucose metabolism, followed by CO2, amino acids and pyruvate. Measuring the release of 14CO2 from glucose labelled in three different positions allowed the construction of a flow diagram of glucose carbon atoms in synaptosomes, which provides information about the contribution of the various pathways of glucose metabolism. Some 2% of glucose utilized was calculated to be degraded via the pentose phosphate pathway. Addition of chlorpromazine, imipramine or haloperidol at concentrations of 10(-5) M reduced glucose utilisation by 30% without changing the distribution pattern of radioactivity in the various products.  相似文献   

18.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4. In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

19.
Glucose has long been considered the substrate for energy metabolism in the retina. Recently, an alternative hypothesis (metabolic coupling) suggested that mitochondria in retinal neurons utilize preferentially the lactate produced specifically by Müller cells, the principal glial cell in the retina. These two views of retinal metabolism were examined using confluent cultures of photoreceptor cells, Müller cells, ganglion cells, and retinal pigment epithelial cells incubated in modified Dulbecco's minimal essential medium containing glucose or glucose and lactate. The photoreceptor and ganglion cells represented neural elements, and the Müller and pigment epithelial cells represented non-neural cells. The purpose of the present experiments was two-fold: (1) to determine whether lactate is a metabolic product or substrate in retinal cells, and (2) to examine the evidence that supports the two views of retinal energy metabolism. Measurements were made of lactic acid production, cellular ATP levels, and cellular morphology over 4 h. Results showed that all cell types incubated with 5 mM glucose produced lactate aerobically and anaerobically at linear rates, the anaerobic rate being 2-3-fold higher (Pasteur effect). Cells incubated with both 5 mM glucose and 10 mM lactate produced lactate aerobically and anaerobically at rates similar to those found when cells were incubated with glucose alone. Anaerobic ATP content in the cells was maintained at greater than 50% of the control, aerobic value, and cellular morphology was well preserved under all conditions. The results show that the cultured retinal cells produce lactate, even in the presence of a high starting ambient concentration of lactate. Thus, the net direction of the lactic dehydrogenase reaction is toward lactate formation rather than lactate utilization. It is concluded that retinal cells use glucose, and not glial derived lactate, as their major substrate.  相似文献   

20.
Quantitative glucose and lactate metabolism was assessed in continuously perfused organotypic hippocampal slices under control conditions and during exposure to glutamate and drugs that interfere with aerobic and anaerobic metabolism. On-line detection was possible with a system based on slow perfusion rates, a half-open (medium/air interface) tissue chamber and a flow injection analytic system equipped with biosensors for glucose and lactate. Under basal conditions about 50% of consumed glucose was converted to lactate in hippocampal slice cultures. Using medium containing lactate (5 mm) instead of glucose (5 mm) significant lactate uptake was observed, but this uptake was less than the net uptake of lactate equivalents in glucose-containing medium. Glucose deprivation experiments suggested lactate efflux from glycogen stores. The effects of drugs compromising or stimulating energy metabolism, i.e. 2-deoxyglucose, 3-nitropropionic acid, alpha-cyano-4-hydroxycinnamate, l-glutamate, d-asparate, ouabain and monensin, were tested in this flow system. The data show that maintaining Na+ and K+ gradients consumed much of the energy but do not support the hypothesis that l-glutamate stimulates glycolysis in hippocampal slice cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号