首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Filimonova SA 《Tsitologiia》2005,47(5):417-425
The epithelial lining of testes in Anystis baccarum is glandular and produces a secretory product necessary to form spermatophores. The main stages of spermatogenesis occur in the lumen of the testis in groups of synchronously developing sister cells. Spermatogonia and late spermatids are encircled by glandular cells. Reorganization of developing spermatids is typical of the trombidiform mites and includes formation of the acrosomal complex, cytoplasm elimination, disappearance of the nuclear envelope and formation of invaginations of plasmalemma. The chromatin material condensation is not followed by the entire chromatin body formation. In mature spermatoza, dense chromatin strands (80b nm in diameter) lie along the cell in the peripheral layer of the cytoplasm. Mature spermatozoa lack axonema or any protrusions. A layer of microtubules, visible underneath the outer membrane, may serve for sperm movement in the female genital duct. The acrosomal complex consists of acromal granule, acrosomal filament and subacrosomal substance. This, as well as two aggregates of typical mitochondria, looks plesiomorphic.  相似文献   

2.
Ultrastructural details of spermiogenesis, spermatozoa and the spermatophore of the early derived actinedid mite Saxidromus delamarei are described. Spermatids and mature sperm cells are provided with up to four acrosomal complexes and nuclei derivatives (chromatin bodies). Due to this reason, the sperm cells may be classified as synspermia, a sperm type found only in some spiders until now. The acrosomal complex is composed of a remarkably complicated vacuole and filament. Other peculiarities of sperm structure correspond to those found in prostigmatic mites, i.e. penetration of the chromatin body by the acrosomal filament and the presence of peripheral invaginations of the plasmalemma. The sperm cells are covered by a thin secretion layer of probably proteinaceous material. Stalked spermatophores are rather large, but simply structured and contain relatively few sperm cells. The results are discussed taking systematical and behavioural aspects into account. In particular, it is suggested that the peculiar mating behaviour of these mites secures both sperm transfer and first male's sperm priority and that this allowed reduction of sperm numbers.  相似文献   

3.
Summary

The stages of spermiogenesis in Myobia murismusculi were investigated on the basis of ultrastructural analysis of both the testes and the female organs: receptaculum seminis and seminal duct. The walls of the testes consist of a thin epithelial layer. Germ and secretory cells lie free in the lumen of the testes. In the early stages of differentiation, both cell types represent clusters of sister cells joined by intercellular bridges. Each secretory cell contains prominent RER and Golgi complex, which produce single dense granule. Growing gradually the granule fills the whole volume of the cell's cytoplasm. Mature secretory cells disintegrate and the secretory product discharges into the testicular lumen. The germ cells are represented by the early, the intermediate and the late spermatids as well as the immature sperm (prospermia). Neither spermatogonia nor meiotic figures were observed in adult males. As spermiogenesis starts, numerous narrow invaginations of the outer membrane (peripheral channels) develop on the cell surface. They form a wide circumferential network connected to pinocytotic vesicles. Owing to the secretory activity of the Golgi complex, a large acrosomal granule is formed in the early spermatids. A long acrosomal filament runs along the intranuclear canal. Nuclear material condenses and forms two spherical bodies of different electron density. The lighter one can be observed until the stage of the late spermatids, when the nuclear envelope almost completely disappears. The electron-dense nuclear body transforms into a definite chromatin body, which is observed in the mature sperm as a cup-shaped structure. The late spermatids are characterized by the presence of a large electronlucent vacuole, which seems to be unique for the process of spermiogenesis in Actinedida. After the spermia enter the female genital tract, the peripheral channels disappear as well as the vacuole. The cells form long amoeboid arms with a special microtubular layer underneath the plasma membrane. The chromatin body is encircled by a large acrosomal granule of complex shape provided by long extensions running deep into the cytoplasm. The cytoplasm contains no organelles except for a group of unmodified mitochondria in the post-nuclear region. The main characteristics of the Myobia spermiogenesis are discussed with regard to other actinedid mites.  相似文献   

4.
东方扁虾精子的超微结构   总被引:1,自引:0,他引:1  
利用电镜研究了东方扁虾(Thenus orientalis)精子的形态和结构。精子由核、膜复合物区和顶体区3部分组成。核内含非浓缩的染色质、微管及细纤维丝,外被核膜;5~6条辐射臂自核部位伸出,臂内充满微管。膜复合物区位于核与顶体之间,由许多膜片层结构及其衍生的囊泡共同组成。顶体区由顶体囊和围顶体物质组成,顶体结构复杂,由顶体帽、内顶体物质和外顶体物质等构成;围顶体物质呈细颗粒状,主要分布于顶体囊  相似文献   

5.
The sperm cell morphology and spermatogenesis of Halacaroides antoniazziae Pepato Tiago and da Rocha 2011 and Acaromantis vespucioi Pepato and Tiago 2004 was investigated. Halacaroides sperm cells have a complete acrosomal complex, dense tubules crossing the cytoplasm and modified mitochondria. Mature sperm cells are surrounded by two kinds of secretions. Inside the ejaculatory duct, they lie upon a centre composed of a secretion structured as heaps of elongated bodies. Acaromantis spermatozoa are spindle shaped and lack an acrosomal complex. The plasmalemma is deeply folded; the cytoplasm is very reduced and devoid of organelles. A single kind of globular secretion was found. The sperm mass is surrounded by two layers of amorphous secretions. These species share a peripheral pattern of nuclear condensation during spermatogenesis, a possible apomorphy for most halacarids, and no special adaptation to the interstitial environment could be related to their sperm cell morphology.  相似文献   

6.
Testes morphology, spermatogenetic process and mature sperm ultrastructure were analysed in Hippocampus guttulatus, using both light and transmission electron microscopy. Both testes were organized in a single large germinal compartment, with a central lumen. Spermatocysts only contained spermatogonia and primary spermatocytes. Inside the testis lumen, together with mature sperm, two types of large mono‐nucleate cells, flagellate and aflagellate, were present. Both types of cells were interpreted as developing germ cells precociously released inside the testis lumen, where their maturation was completed. According to the different morphological features of the nuclei, such as chromatin condensation degree, aspect of the nuclear fossa and others, the flagellate cells were unquestionably developing spermatids. On the contrary, the developmental stage of the aflagellate was more difficult to interpreted. They could be secondary spermatocytes or young spermatids. No dimorphic sperm were recognizable, the only sperm type observed have features typical of the intro‐sperm reports in other syngnathids species. They had a cylindrical head, a short midpiece, characterized by two mitochondrial rings housed inside a cytoplasmic collar, and a long flagellum. These and previous data about the same topic reported on other syngnathids species were compared and discussed.  相似文献   

7.
Morphological changes and chromatin condensation of sperm nuclei were observed during spermatogenesis in the fucalean brown alga Cystoseira hakodatensis (Yendo) Fensholt. Ultrastructural studies have shown that the mature spermatozoid has an elongated and concave nucleus with condensed chromatin. The morphological changes and the chromatin condensation process during spermatogenesis was observed. Nuclear size decreased in two stages during spermatogenesis. During the first stage, spherical nuclei decreased in size as they were undergoing meiotic divisions and the subsequent mitoses within the antheridium. During the second stage, the morphological transformation from a spherical into an elongated nucleus occurred. Afterwards, chromatin condensed at the periphery in each nucleus, and chromatin‐free regions were observed in the center of the nucleus. These chromatin‐free regions in the center of nucleus were compressed by the peripheral chromatin‐condensed region. As the result, the elongated and concave nucleus of the mature sperm consisted of uniformly well‐condensed chromatin.  相似文献   

8.
The mature spermatozoon of Admetus pomilio is a spherical cell containing nucleus and tightly coiled flagellum. In early spermatids the Golgi apparatus forms the acrosomal vesicle and at the opposite side the distal centriole gives rise to the axonemal complex of the sperm tail. As the nucleus elongates, chromatin forms twisted filaments and the spermatid nucleus takes on a helical form. Microtubules are juxtaposed with the nucleus envelope, which is separated from a central chromatin mass by an electron lucid region. A long perforatorium, located on the border of the chromatin mass, runs helically in the nucleus from the centriolar region to subacrosomal space. During tail elongation, the anterior part of the axoneme is surrounded by a long, spiral mitochondrial sheath. In the late spermatid, chromatin filaments appear twisted and become aggregated. The nucleus and flagellum undergo further contortions in which the nucleus coils and the flagellum winds up into the body of the cell and coils in a regular fashion. The mitochondrial sheath surrounds about 2/3 of the 9 + 3 axoneme. These features of spermatid ultrastructure resemble those in the primitive Liphistiomorpha.  相似文献   

9.
蟋蟀与蝗虫精子顶体复合体的超微结构比较(直翅目)   总被引:1,自引:0,他引:1  
通过对蟋蟀科北京同葫芦GryllusmitratusBurmeister精子顶体复合体超微结构的观察发现其顶体外人有固定的形状,顶体本体内具有一些丝状物,与前人描述的蝗总科精子顶体复合体相比较,虽然两者的顶体复合体都为三层结构,但在顶本以及顶体本结构上却存明显的差异。  相似文献   

10.
This study reports ultrastructural and cytochemical aspects of spermiogenesis and synspermia in the brown spider Loxosceles intermedia. The roundish early spermatids are initially interconnected by cytoplasmic bridges, forming groups of four cells. During spermiogenesis, these cells pass through a series of modifications: (1) progressive nuclear condensation brings chromatin into a fibrillar arrangement; (2) the nucleus becomes long and asymmetric, with a short post-centriolar elongation; (3) formation of the long, cone-shaped acrosome and the F-actin acrosomal filament; (4) establishment of the implantation fossa and the 9x2+3 pattern flagellum, which extends away from the sperm cell body. Eventually, the entire cell undergoes twisting and folding resulting in a synspermium, containing four sperm cells in which the flagellum and nucleus are delimitated by the plasma membrane, as individualized structures, but remain involved by the fused remaining cytoplasm and plasma membrane. Reaching the vas deferens, the synspermia are surrounded by a basic glycoproteic secretion. Synspermia are considered a derivative character, probably developed in this Sicariidae species, as well as in other Haplogynae, as an adaptation to improve the reproductive strategy.  相似文献   

11.
D. Ó Foighil 《Zoomorphology》1985,105(2):125-132
Summary Lasaea subviridis and Mysella tumida sperm resemble the primitive spermatozoan type, but exhibit several unique morphological features. L. subviridis sperm heads vary in shape and size owing to differing degrees of nuclear condensation. A fully mature, heterogenous acrosomal vesicle with an associated axial rod is present. Up to 50% of L. subviridis sperm in developing gonads have conspicuously angled flagella that propel the sperm cells in irregular helical paths. This may represent a penultimate stage in sperm development because the remainder of the sperm cells have posteriorly-directed flagella and swim in a nonhelical anterior direction. A trend toward a reduction in both nuclear condensation and swimming ability may be a long-term consequence of increasing degrees of localized, but non-internal self-fertilization in marine invertebrates that brood. Mysella tumida sperm are monomorphic and possess numerous microvilli (30–60 nm in diameter and up to 5.7 m in length) that resemble stereocilia and radiate from the cell membrane surrounding the basal body. In this species, the sperm cell does not have an axial rod, and the complex acrosomal vesicle contains five distinct zones of varying electron opacity. One of these zones is a transverse, electron-opaque band that is apparently composed of rolled-up membrane. Following acrosomal breakdown, this membrane unfolds to cover the anterior tip of the sperm cell. Although both L. subviridis and M. tumida are hermaphroditic, the relative size of their male investments is conspicuously different. Approximately 40–50% of the M. tumida gonadal volume is testis compared with about 5% of that in L. subviridis.  相似文献   

12.
The spermatozoon of the parasitoid wasp Cotesia congregata is an extremely short gamete measuring less than 7 μm; it is as yet the shortest flagellated sperm to be identified. The mature sperm consists of an acrosome, surrounded by an extra cellular coat, a condensed nucleus, two uncoiled mitochondrial derivatives and a short axoneme. Testes of young adults contain a continuum of differentiation stages. Initially, the flagellum is approximately 5 μm long. It conserves its length in round, elongated and mature spermatids, but is reduced to less than 3 μm in mature spermatozoa. The nucleus is 2 μm in diameter when round, 10 μm long when it becomes a long boat-hull shaped filament, and then reduces to 3.6 μm. Thus, during development the gamete reaches a total length of 15 μm before finally reducing to less than half that length. Some traits of mature sperm anatomy are similar to related species of the Braconidae family, but others seem to be specific and could be due to the shortness of the cell. This uncommon elongation and subsequent shortening of such a tiny flagellated cell constitutes a model for both nucleus and cilium development.  相似文献   

13.
Chiva M  Saperas N  Ribes E 《Tissue & cell》2011,43(6):367-376
In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei  相似文献   

14.
Ultrastructural features of the ovotestes, spermatogenesis, and the mature sperm are described for three galeommatid bivalves, Divariscintilla yoyo, Divariscintilla troglodytes, and Scintilla sp., from stomatopod burrows in eastern Florida. All three species yielded similar results except with respect to mature sperm dimensions. The ovotestis contains three types of somatic cells within the testicular portion: flattened myoepithelial cells defining the outer acinal wall; underlying pleomorphic follicle cells containing abundant glycogen deposits; and scattered, amoeboid cells containing lysosomal-like inclusions which are closely associated with developing sperm. Early spermatogenesis is typical of that reported from other bivalves. In contrast, the late stages of spermiogenesis involve the migration and gradual rotation of the acrosomal vesicle, resulting in a mature acrosome tilted about 70° from the long axis of the cell. The mature sperm possesses an elongated, slightly curved nucleus; a subterminal, concave acrosome with a nipple-like central projection; five spherical mitochondria and two centnoles in the middlepiece; and a long flagellum. The rotational asymmetry and the presence of perimitochondrial glycogen deposits in these sperm are unusual in the Bivalvia and may be associated with fertilization specializations and larval brooding common among galeommatoideans.  相似文献   

15.
Spermiogenesis in the aplysiid, Aplysia kurodai (Gastropoda, Opisthobranchia) was studied by transmission electron microscopy, with special attention to acrosome formation and the helical organization of the nucleus and the other sperm components. In the early spermatid, the periphery of the nucleus differentiates into three characteristics parts. The first part is that electron-dense deposits accumulate on the outer nuclear envelope. This part is destined to be the anterior side of the sperm because a tiny acrosome is organized on its mid-region at the succeeding stage of spermiogenesis. The second part, in which electron-dense material attaches closely to the inner side of the nuclear envelope, is the presumptive posterior side. A centriolar fossa is formed in this part and the axoneme of the flagellum extends from the fossa. A number of lamellar vesicles derived from mitochondria assemble around the axoneme and form the flagellum complex. The third part is recognized by the chromatin which condenses locally along the inner nuclear envelope. During development of the spermatid, this part extends to form a spiral nucleus accompanied by chromatin condensation and formation of microtubular lamellae outside the extending nucleus.
Finally, in the mature sperm, a tiny, spherical acrosomal vesicle is detected at the apex. The slender nucleus, overlapping both the primary and secondary helices which are composed of different structural elements, winds around the flagellum axoneme.  相似文献   

16.
东方扁虾精子发生的超微结构   总被引:2,自引:0,他引:2  
应用电镜技术研究了东方扁虾(Thenus orientalis)精子发生的全过程,精原细胞呈椭圆形,其染色质分布较均匀,线粒体集中于细胞一端形成“线粒体区”。初级精母细胞较大,染色质凝聚成块,次级精母细胞核质间常出现大的囊泡,胞质内囊泡丰富而线粒体数量却明显减少,早期精细胞核发生极化、解聚,部分胞质被抛弃。中期精细胞外观呈金字塔形,分为三区;正在形成的顶体位于塔顶,核位于塔基部,居间的细胞质基质内富含膜复合物,后期精细胞顶体进一步分化。形成顶体帽和内、外顶体物质等三个结构组份。成熟精子核呈盘状或碗状,具有5-6条内部充满微管的辐射臂。  相似文献   

17.
Serial Block‐Face Scanning Electron Microscopy (SBF‐SEM) was used in this study to examine the ultrastructural morphology of Penaeus monodon spermatozoa. SBF‐SEM provided a large dataset of sequential electron‐microscopic‐level images that facilitated comprehensive ultrastructural observations and three‐dimensional reconstructions of the sperm cell. Reconstruction divulged a nuclear region of the spermatophoral spermatozoon filled with decondensed chromatin but with two apparent levels of packaging density. In addition, the nuclear region contained, not only numerous filamentous chromatin elements with dense microregions, but also large centrally gathered granular masses. Analysis of the sperm cytoplasm revealed the presence of degenerated mitochondria and membrane‐less dense granules. A large electron‐lucent vesicle and “arch‐like” structures were apparent in the subacrosomal area, and an acrosomal core was found in the acrosomal vesicle. The spermatozoal spike arose from the inner membrane of the acrosomal vesicle, which was slightly bulbous in the middle region of the acrosomal vesicle, but then extended distally into a broad dense plate and to a sharp point proximally. This study has demonstrated that SBF‐SEM is a powerful technique for the 3D ultrastructural reconstruction of prawn spermatozoa, that will no doubt be informative for further studies of sperm assessment, reproductive pathology and the spermiocladistics of penaeid prawns, and other decapod crustaceans. J. Morphol. 277:565–574, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Spermiogenesis in the South American leptodactylid frog Odontophrynus cultripes was analyzed ultrastructurally. The spermatids undergo morphological modification while still enclosed in microtubule-rich processes of Sertoli cells. Electron-dense plates resembling junctional structures appear in regions at which the spermatids lie in close contact with the surface of Sertoli cell processes. Spermatid differentiation can be divided into five distinct stages based mainly on chromatin condensation. In the late stages, the densely compacted chromatin loses reactivity to ethanolic phosphotungstic acid (E-PTA). Helical arrangements of microtubules appear in the cytoplasm that surrounds the spermatid nucleus after the second stage. The acrosomal vesicle differentiates into a cone-shaped acrosome that caps the anterior region of the nucleus. The connecting piece, located in the flagellum implantation zone, has transverse striations, and is continuous with the axial rod. The tail is formed by a 9 + 2 axoneme, an undulating membrane, and an axial rod that is rich in basic proteins as demonstrated by E-PTA staining.  相似文献   

19.
Acrosomeless round-headed spermatozoa from three men were studied under electron microscopy and indirect immunofluorescene microscopy using the anti-calicin antibody that recognizes a basic protein of the sperm perinuclear theca (Longo et al., 1987). Electron microscopy revealed the existence of anomalies of the nuclear envelope, the nuclear matrix underlying the nuclear envelope, and the perinuclear layer. The absence of sperm labeling with the anti-calicin antibody confirmed that the formation of the perinuclear theca was impaired. Data obtained from both mature spermatozoa and ejaculated spermatids suggest that i) round-headed sperm head anomalies result from a failure of differentiation of the sperm-specific skeletal complex related to the nucleus, and ii) the acrosome spreading over the nucleus, the nuclear elongation and the post-acrosomal sheath formation are dependent on such nuclear-perinuclear differentiations. In contrast, chromatin condensation, cytokinesis and some events of the acrosomal shaping appear not to depend on those nuclear-related differentiations. The possible processes allowing the maintenance of the sperm head structures and their subsequent morphogenesis are discussed.  相似文献   

20.
The mature sperm of Dina lineata is of the modified type. The sperm are 48 μm long and 0.3 μm wide. The sperm are filiform and helicoidal cells with a distinct head, a midpiece, and a tail. There are two distinct regions in the head: the acrosome and the posterior acrosome, each with its own characteristic morphology. The midpiece is the mitochondrial region and has a single mitochondrion. Two distinct portions can be observed in the tail: the axonematic region and the terminal piece. In the process of spermatogenesis the early spermatogonia divide to form a poliplast of 512 spermatic cells. In the spermiogenesis the following sequential stages can be distinguished: elongation of the flagellum; reciprocal migration of mitochondria and Golgi complex; condensation of chromatin and formation of the posterior acrosome; spiralization of nuclear and mitochondrial regions; and, finally, formation of the anterior acrosome. The extreme morphological complexity of the Dina spermatozoon is related to the peculiar hypodermal fertilization which characterizes the erpobdellid family. Correlation between sperm morphology and fertilization biology in the Annelida is revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号