首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Germline cysts are conserved structures in which cells initiating meiosis are interconnected by ring canals. In many species, the cyst phase is of limited duration, but the chordate, Oikopleura, maintains it throughout prophase I as a unique cell, the coenocyst. We show that despite sharing one common cytoplasm with meiotic and nurse nuclei evenly distributed in a 1:1 ratio, both entry into meiosis and subsequent endocycles of nurse nuclei were asynchronous. Coenocyst cytoskeletal elements played central roles as oogenesis progressed from a syncytial state of indistinguishable germ nuclei, to a final arrangement where the common cytoplasm had been equally partitioned into resolved, mature oocytes. During chromosomal bouquet formation in zygotene, nuclear pore complexes clustered and anchored meiotic nuclei to the coenocyst F-actin network opposite ring canals, polarizing oocytes early in prophase I. F-actin synthesis was required for oocyte growth but movement of cytoplasmic organelles into oocytes did not require cargo transport along colchicine-sensitive microtubules. Instead, microtubules maintained nurse nuclei on the F-actin scaffold and prevented their entry into growing oocytes. Finally, it was possible to both decouple meiotic progression from cellular mechanisms governing oocyte growth, and to advance the timing of oocyte growth in response to external cues.  相似文献   

2.
Previous studies (Holmes, K.V., and P.W. Choppin. J. Exp. Med. 124:501- 520; J. Cell Biol. 39:526-543) showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing microfilaments in this process has been investigated by immunofluorescence microscopy using specific antisera, time-lapse cinematography, and electron microscopy. During cell fusion, micro tubules and 10-nm filaments from many cells form large bundles which are localized between rows of nuclei. No organized bundles of actin fibers were detected in these areas, although actin fibers were observed in regions away from the aligned nuclei. Although colchicine disrupts microtubules and inhibits nuclear movement, cytochalasin B (CB; 20-50 microgram/ml) does not inhibit cell fusion or nuclear movement. However, CB alters the shape of the syncytium, resulting in long filamentous processes extending from a central region. When these processes from neighboring cells make contact, fusion occurs, and nuclei migrate through the channels which are formed. Electron and immunofluorescence microscopy reveal bundles of microtubules and 10-nm filaments in parallel arrays within these processes, but no bundles of microfilaments were detected. The effect of CB on the structural integrity of microfilaments at this high concentration (20 microgram/ml) was demonstrated by the disappearance of filaments interacting with heavy meromyosin. Cycloheximide (20 microgram/ml) inhibits protein synthesis but does not affect cell fusion, the formation of microtubules and 10-nm filament bundles, or nuclear migration and alignment; thus, continued protein synthesis is not required. The association of microtubules and 10-nm filaments with nuclear migration and alignment suggests that microtubules and 10-nm filaments are two components in a system which serves both cytoskeletal and force-generating functions in intracellular movement and position of nuclei.  相似文献   

3.
Organization of the cytoskeleton in early Drosophila embryos   总被引:29,自引:21,他引:8       下载免费PDF全文
The cytoskeleton of early, non-cellularized Drosophila embryos has been examined by indirect immunofluorescence techniques, using whole mounts to visualize the cortical cytoplasm and sections to visualize the interior. Before the completion of outward nuclear migration at nuclear cycle 10, both actin filaments and microtubules are concentrated in a uniform surface layer a few micrometers deep, while a network of microtubules surrounds each of the nuclei in the embryo interior. These two filament-rich regions in the early embryo correspond to special regions of cytoplasm that tend to exclude cytoplasmic particles in light micrographs of histological sections. After the nuclei in the interior migrate to the cell surface and form the syncytial blastoderm, each nucleus is seen to be surrounded by its own domain of filament-rich cytoplasm, into which the cytoskeletal proteins of the original surface layer have presumably been incorporated. At interphase, the microtubules seem to be organized from the centrosome directly above each nucleus, extending to a depth of at least 40 microns throughout the cortical region of cytoplasm (the periplasm). During this stage of the cell cycle, there is also an actin "cap" underlying the plasma membrane immediately above each nucleus. As each nucleus enters mitosis, the centrosome splits and the microtubules are rearranged to form a mitotic spindle. The actin underlying the plasma membrane spreads out, and closely spaced adjacent spindles become separated by transient membrane furrows that are associated with a continuous actin filament-rich layer. Thus, each nucleus in the syncytial blastoderm is surrounded by its own individualized region of the cytoplasm, despite the fact that it shares a single cytoplasmic compartment with thousands of other nuclei.  相似文献   

4.
Following PEG (polyethylene glycol) treatment of ovulated metaphase II mouse oocytes aggregated with thymocytes, fusion of cell membranes occurs. Prerequisites for cell fusion are: close apposition of lectin-agglutinated (phytohemagglutinin-treated) membranes of both cells, formation of firm punctual adhesion sites, and expansion of adhesion sites over a certain area. Establishment of the firm cell-cell contact is associated with development of actin-like filaments along both of the adhering plasma membranes. Membrane fusion occurs at single or multiple sites, and is followed by internalization of thymocyte-oocyte membrane complexes decorated with actin filaments into the hybrid cell cytoplasm. A filamentous actin layer forms also along the inner surface of newly formed hybrid oocyte-thymocyte plasma membrane. Thymocyte nuclei incorporated into oocyte cytoplasm undergo nuclear envelope breakdown and premature chromosome condensation (PCC) leading, eventually, to formation of single chromatids complete with kinetochores. Concomitantly with chromatin condensation an extensive polymerization of microtubules starts in the center of the chromatin mass which leads to the formation of an apparently non-functional spindle-like structure.  相似文献   

5.
At a late stage in Drosophila oogenesis, nurse cells rapidly expel their cytoplasm into the oocyte via intracellular bridges by a process called nurse cell dumping. Before dumping, numerous cables composed of actin filaments appear in the cytoplasm and extend inward from the plasma membrane toward the nucleus. This actin cage prevents the nucleus, which becomes highly lobed, from physically blocking the intracellular bridges during dumping. Each cable is composed of a linear series of modules composed of ~25 cross-linked actin filaments. Adjacent modules overlap in the cable like the units of an extension ladder. During cable formation, individual modules are nucleated from the cell surface as microvilli, released, and then cross-linked to an adjacent forming module. The filaments in all the modules in a cable are unidirectionally polarized. During dumping as the volume of the cytoplasm decreases, the nucleus to plasma membrane distance decreases, compressing the actin cables that shorten as adjacent modules slide passively past one another just as the elements of an extension ladder slide past one another for storage. In Drosophila, the modular construction of actin cytoskeletons seems to be a generalized strategy. The behavior of modular actin cytoskeletons has implications for other actin-based cytoskeletal systems, e.g., those involved in Listeria movement, in cell spreading, and in retrograde flow in growth cones and fibroblasts.  相似文献   

6.
L Cooley  E Verheyen  K Ayers 《Cell》1992,69(1):173-184
The entire cytoplasmic contents of 15 highly polyploid nurse cells are transported rapidly to the oocyte near the end of Drosophila oogenesis. chickadee is one of a small group of genes whose mutant phenotype includes a disruption of this nurse cell cytoplasm transport. We have cloned the chickadee gene and found that cDNA clones encode a protein 40% identical to yeast and Acanthamoeba profilin. The nurse cells from chickadee egg chambers that lack ovary-specific profilin fail to synthesize cytoplasmic actin networks correctly. In addition, the nurse cell nuclei in chickadee egg chambers become displaced and often partially stretched through the channels leading into the oocyte, blocking the flow of cytoplasm. We suggest that the newly synthesized cytoplasmic actin networks are responsible for maintaining nuclear position in the nurse cells.  相似文献   

7.
During late stages of Drosophila oogenesis, the cytoplasm of nurse cells in the egg chamber is rapidly transferred ("dumped") to oocytes, while the nurse cell nuclei are anchored by a mechanism that involves the actin cytoskeleton. The factors that mediate this interaction between nuclei and actin cytoskeleton are unknown. MSP-300 is the likely Drosophila ortholog of the mammalian Syne-1 and -2 and C. elegans ANC-1 proteins, contained both actin-binding and nuclear envelope localization domains. By using an antibody against C-terminus of MSP-300, we find that MSP-300 is distributed throughout the cytoplasm and accumulates at the nuclear envelope of nurse cells and the oocyte. A GFP fusion protein containing the C-terminal region of MSP-300 is also sufficient to localize protein on the nuclear envelope in oocytes. To eliminate the maternal gene activity during oogenesis, we generated homozygous germ-line clones of a loss-of-function mutation in msp-300 in otherwise heterozygous mothers. In the mutant egg chambers that develop from such clones, cytoplasmic dumping of nurse cells is severely disturbed. The nuclei of nurse cells and the oocyte are mislocalized and the usually well-organized actin structures are severely disrupted. These results indicate that maternal MSP-300 plays an important role in actin-dependent nuclear anchorage during cytoplasmic transport.  相似文献   

8.
Mine I  Anota Y  Menzel D  Okuda K 《Protoplasma》2005,226(3-4):199-206
Summary. The configuration and distribution of polyadenylated RNA (poly(A)+ RNA) during cyst formation in the cap rays of Acetabularia peniculus were demonstrated by fluorescence in situ hybridization using oligo(dT) as a probe, and the spatial and functional relationships between poly(A)+ RNA and microtubules or actin filaments were examined by immunofluorescence microscopy and cytoskeletal inhibitor treatment. Poly(A)+ RNA striations were present in the cytoplasm of early cap rays and associated with longitudinal actin bundles. Cytochalasin D destroyed the actin filaments and caused a dispersal of the striations. Poly(A)+ RNA striations occurred in the cytoplasm of the cap rays up to the stage when secondary nuclei migrated into the cap rays, but they disappeared after the secondary nuclei were settled in their positions. At that time, a mass of poly(A)+ RNA was present around each of the secondary nuclei and accumulated rRNA. This mass colocalized with microtubules radiating from the surface of each secondary nucleus and disappeared when the microtubules were depolymerized by butamifos, which did not affect the configuration of actin filaments. These masses of poly(A)+ RNA continued to exist even after the cap ray cytoplasm divided into cyst domains. Thus two distinct forms of poly(A)+ RNA population, striations and masses, appear in turn at consecutive stages of cyst formation and are associated with distinct cytoskeletal elements, actin filaments and microtubules, respectively. Correspondence and reprints: Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.  相似文献   

9.
Drosophila Quail protein is required for the completion of fast cytoplasm transport from nurse cells to the oocyte, an event critical for the production of viable oocytes. The abundant network of cytoplasmic filamentous actin, established at the onset of fast transport, is absent in quail mutant egg chambers. Previously, we showed that Quail is a germline-specific protein with sequence homology to villin, a vertebrate actin-regulating protein. In this study, we combined biochemical experiments with observations in egg chambers to define more precisely the function of this protein in the regulation of actin-bundle assembly in nurse cells. We report that recombinant Quail can bind and bundle filamentous actin in vitro in a manner similar to villin at a physiological calcium concentration. In contrast to villin, Quail is unable to sever or cap filamentous actin, or to promote nucleation of new actin filaments at a high calcium concentration. Instead, Quail bundles the filaments regardless of the calcium concentration. In vivo, the assembly of nurse-cell actin bundles is accompanied by extensive perforation of the nurse-cell nuclear envelopes, and both of these phenomena are manifestations of nurse-cell apoptosis. To investigate whether free calcium levels are affected during apoptosis, we loaded egg chambers with the calcium indicator Indo-1. Our observations indicate a rise in free calcium in the nurse-cell cytoplasm coincident with the permeabilization of the nuclear envelopes. We also show that human villin expressed in the Drosophila germline could sense elevated cytoplasmic calcium; in nurse cells with reduced levels of Quail protein, villin interfered with actin-bundle stability. We conclude that Quail efficiently assembles actin filaments into bundles in nurse cells and maintains their stability under fluctuating free calcium levels. We also propose a developmental model for the fast phase of cytoplasm transport incorporating findings presented in this study.  相似文献   

10.
The changes in the formation of both the actin and the microtubular cytoskeleton during the differentiation of the embryo-suspensor in Sedum acre were studied in comparison with the development of the embryo-proper. The presence and distribution of the cytoskeletal elements were examined ultrastructurally and with the light microscope using immunolabelling and rhodamine-phalloidin staining. At the globular stage of embryo development extensive array of actin filaments is present in the cytoplasm of basal cell, the microfilament bundles generally run parallel to the long axis of basal cell and pass in close to the nucleus. Microtubules form irregular bundles in the cytoplasm of the basal cell. A strongly fluorescent densely packed microtubules are present in the cytoplasmic layer adjacent to the wall separating the basal cell from the first layer of the chalazal suspensor cells. At the heart-stage of embryo development, in the basal cell, extremely dense arrays of actin materials are located near the micropylar and chalazal end of the cell. At this stage of basal cell formation, numerous actin filaments congregate around the nucleus. In the fully differentiated basal cell and micropylar haustorium, the tubulin cytoskeleton forms a dense prominent network composed of numerous cross-linked filaments. In the distal region of the basal cell, a distinct microtubular cytoskeleton with numerous microtubules is observed in the cytoplasmic layer adjacent to the wall, separating the basal cell from the first layer of the chalazal suspensor cells. The role of cytoskeleton during the development of the suspensor in S. acre is discussed.  相似文献   

11.
The three-dimensional organization of the cytoplasm of randomly migrating neutrophils was studied by stereo high-voltage electron microscopy. Examination of whole-mount preparations reveals with unusual clarity the structure of the cytoplasmic ground substance and cytoskeletal organization; similar clarity is not observed in conventional sections. An extensive three-dimensional network of fine filaments (microtrabeculae) approximately 7 to 17 nm in diameter extends throughout the cytoplasm and between the two cell cortices; it also comprises the membrane ruffles and filopodia. The granules are dispersed within the lattice and are surrounded by microtrabeculae. The lattice appears to include dense foci from which the microtrabeculae emerge. Triton X-100 dissolves the plasma membrane, most of the granules, and many of the microtrabecular strands and leaves as a more stable structure a cytoskeletal network composed of various filaments and microtubules. Heavy meromyosin-subfragment 1 (S1) decoration discloses actin filaments as the major filamentous component present in membrane ruffles and filopodia. Actin filaments, extending from the leading edge of the cells, are of uniform polarity, with arrowheads pointing towards the cell body. Likewise, the filaments forming the core of filopodia have the barbed end distal. End-to-side associations of actin filaments as well as fine filaments (2--3 nm) which are not decorated with S1 and link actin filaments are observed. The ventral cell cortex includes numerous substrate-associated dense foci with actin filaments radiating from the dense center. Virtually all the microtubules extend from the centrosome. An average of 35 +/- 7 microtubules originate near the pair of centrioles and radiate towards the cell periphery; microtubule fragments are rare. Intermediate filaments form an open network of single filaments in the perinuclear space. Comparison of Triton-extracted and unextracted cells suggest that many of the filamentous strands seen in unextracted cells have as a core a stable actin filament.  相似文献   

12.
In early development, Drosophila melanogaster embryos form a syncytium, i.e., multiplying nuclei are not yet separated by cell membranes, but are interconnected by cytoskeletal polymer networks consisting of actin and microtubules. Between division cycles 9 and 13, nuclei and cytoskeleton form a two-dimensional cortical layer. To probe the mechanical properties and dynamics of this self-organizing pre-tissue, we measured shear moduli in the embryo by high-speed video microrheology. We recorded position fluctuations of injected micron-sized fluorescent beads with kHz sampling frequencies and characterized the viscoelasticity of the embryo in different locations. Thermal fluctuations dominated over nonequilibrium activity for frequencies between 0.3 and 1000 Hz. Between the nuclear layer and the yolk, the cytoplasm was homogeneous and viscously dominated, with a viscosity three orders of magnitude higher than that of water. Within the nuclear layer we found an increase of the elastic and viscous moduli consistent with an increased microtubule density. Drug-interference experiments showed that microtubules contribute to the measured viscoelasticity inside the embryo whereas actin only plays a minor role in the regions outside of the actin caps that are closely associated with the nuclei. Measurements at different stages of the nuclear division cycle showed little variation.  相似文献   

13.
We investigated the distribution of microtubules and microfilaments in some exocrine and endocrine cells in rats. Microtubules were stained by applying an immunofluorescent technique using antibodies against beta-tubulin, while microfilaments were stained with rhodamine-phalloidin, which binds selectively to polymerized actin filaments. In the cytoplasm of some exocrine cells (pancreatic acinar cells and ventral prostatic epithelial cells), the microtubules were distributed longitudinally from the apical region to the basal region, but no microtubules were found in the nuclear region. In exocrine cells, most of the microfilaments were localized beneath the apical plasma membrane. In some endocrine cells (those of the adenohypophysis and the islets of Langerhans), the microtubules exhibited a radial or reticular distribution in the cytoplasm, and intense fluorescence was observed in the perinuclear region. The immunofluorescence produced by the antibodies against beta-tubulin was more intense in endocrine cells than in exocrine cells. The microfilaments observed in the endocrine cells studied were homogenously distributed beneath the plasma membrane. Dot-like rhodamine-phalloidin staining was often observed in the cytoplasm of both the exocrine and endocrine cells. The present study clearly demonstrated marked differences in the distribution of cytoskeletal elements in exocrine and endocrine cells, and these may reflect differences in the secretory direction of such cells as well as in epithelial-cell polarity.  相似文献   

14.
Stereo-electron microscopy has been combined with indirect immunoperoxidase labelling to describe the three-dimensional organization of microfilaments and microtubules in spreading cells of a cultured cell line with fibroblastic morphology. Labelling was carried out after extraction of the cells with a non-ionic detergent in a buffer system allowing retention of many of the cytoskeletal elements. Preservation of the three-dimensional organization was ensured by critical point drying. The peroxidase reaction product is readily detectable in electron micrographs both at high and low magnification. Thus, visualization of the three-dimensional organization of the labelled cytoskeletal elements is possible at a magnification where entire cells or large parts of them can be examined in whole mounts. The microfilament system is shown to constitute a continuous, three-dimensional sheath enclosing the bulk of the cytoplasm and most of the microtubular system. In cytoskeletons labelled with actin antibodies, the unlabelled intermediate filaments (10 nm filaments) can be identified by their size and morphology. They constitute a network throughout the cytoplasm which is in part interwoven with the large actin cables located near the lower surface of the cell.  相似文献   

15.
During larva-to-pupa metamorphosis Drosophila salivary glands undergo programmed cell death by autophagocytosis. Although ultrastructure of Drosophila salivary glands has been extensively studied in the past, little is known about mechanism of programmed cell death, especially the role of the cytoskeleton. In this paper we describe changes in microtubule and actin filament network compared to the progress of DNA fragmentation and redistribution of acid phosphatase. In feeding and wandering larvae microtubules and actin filaments form regular networks localized mostly along the plasma membrane. The first major rearrangement of microtubules and actin filaments occurred when larvae everted spiracles and the glands shifted their secretion from saliva to mucoprotein glue (stage L1). Microtubule cytoskeleton became denser and actin filaments concentrated along cell boundaries. At the same time nuclei flattened and migrated into the microtubule-rich layer near the basal membrane. In late prepupae (8-10 h after P1) the microtubule network became fainter, and actin filaments appeared frequently deeper in cytoplasm, gradually concentrating around nuclei. Simultaneously large patches of acid phosphatase activity surrounded nuclei and shortly thereafter chromosomal DNA began to fragment. During the final collapse of the gland (early pupae, 13.5 h after formation of white puparium) cellular fragments and autophagic vacuoles contained a continuous F-actin lining and the microtubule network displayed signs of extensive degradation. The results are consistent with the hypothesis that, in Drosophila salivary glands, extensive autophagic activities target nuclei for degradation; that this process occurs late in the course of programmed cell death; and that it directly involves cytoskeletal structures which are altered far earlier during the course of cell death.  相似文献   

16.
The morphology of budding and conjugating cells and associated changes in microtubules and actin distribution were studied in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by phase-contrast and fluorescence microscopy. The non-budding interphase cell showed a nucleus situated in the central position and bundles of cytoplasmic microtubules either stretching parallel to the longitudinal cell axis or randomly distributed in the cell; none of these, however, had a character of astral microtubules. During mitosis, the nucleus divided in the daughter cell, cytoplasmic microtubules disappeared and were replaced by a spindle. The cytoplasmic microtubules reappeared after mitosis had finished. Actin patches were present both in the bud and the mother cell. Cells were induced to mate by transfer to ribitol- containing medium without nitrogen. Partner cells fused by conjugation projections where actin patches had been accumulated. Cell fusion resulted in a zygote that produced a basidium with parallel bundles of microtubules extended along its axis and with actin patches concentrated at the apex. The fused nucleus moved towards the tip of the basidium. During this movement, nuclear division was taking place; the nuclei were eventually distributed to basidiospores. Mitochondria appeared as vesicles of various sizes; their large amounts were found, often lying adjacent to microtubules, in the subcortical cytoplasm of both vegetative cells and zygotes.  相似文献   

17.
Summary Within the infected cells of root nodules there is evidence of stratification and organisation of symbiosomes and other organelles. This organisation is likely to be important for the efficient exchange of nutrients and metabolites during functioning of the nodules. Using immunocytochemical labelling and confocal microscopy we have determined the organisation of cytoskeletal elements, micro tubules and actin microfilaments in soybean nodule cells, with a view to assessing their possible role in organelle distribution. Most microtubule arrays occurred in the cell cortex where they formed disorganised arrays in both uninfected and infected cells from mature nodules. In infected cells from developing nodules, parallel arrays of microtubules, transverse to the long axis of the cell, were observed. In incipient nodules, before release of rhizobia into the plant cells, the cells also had an array of microtubules which radiated from the nucleus into the cytoplasm. Three actin arrays were identified in the infected cells of mature nodules: an aster-like array which emanated from the surface of the nucleus, a cortical array which had an arrangement similar to that of the cortical microtubules, and, throughout the cytoplasm, an array of fine filaments which had a honeycomb arrangement consistent with a distribution between adjacent symbiosomes. Uninfected cells from mature nodules had only a random cortical array of actin filaments. In incipient nodules, the density of actin microfilaments associated with the nucleus and radiating through the cytoplasm was much less than that seen in mature infected cells. The cortical array of actin also differed, being composed of swirling configurations of filaments. After invasion of nodule cells by the rhizobia, the number of actin filaments emanating from the nucleus increased markedly and formed a network through the cytoplasm. Conversely, the cytoplasmic array in uninfected cells of developing nodules was identical to that in the cells of incipient nodules. The cytoplasmic network in infected cells of developing nodules is likely to be the precursor of the honeycomb array seen in mature nodule cells. We propose that this actin array plays a role in the spatial organisation of symbiosomes and that the microtubules are involved in the localisation of mitochondria and plastids at the cell periphery in the infected cells of root nodules.  相似文献   

18.
The cytoskeleton is composed of three distinct elements: actin microfilaments, microtubules and intermediate filaments. The actin cytoskeleton is thought to provide protrusive and contractile forces, and microtubules to form a polarized network allowing organelle and protein movement throughout the cell. Intermediate filaments are generally considered the most rigid component, responsible for the maintenance of the overall cell shape. Cytoskeletal elements must be coordinately regulated for the cell to fulfill complex cellular functions, as diverse as cell migration, cell adhesion and cell division. Coordination between cytoskeletal elements is achieved by signaling pathways, involving common regulators such as the Rho guanosine-5'-triphosphatases (GTPases). Furthermore, evidence is now accumulating that cytoskeletal elements participate in regulating each other. As a consequence, although their functions seem well defined, they are in fact overlapping, with actin playing a role in membrane trafficking and microtubules being involved in the control of protrusive and contractile forces. This cytoskeletal crosstalk is both direct and mediated by signaling molecules. Cell motility is a well-studied example where the interplay between actin and microtubules appears bidirectional. This leads us to wonder which, if any, cytoskeletal element leads the way.  相似文献   

19.
During the course of cell-wall regeneration in protoplasts isolatedfrom tobacco BY-2 cells, the nucleus changed its position fromthe central region to the cell periphery. This nuclear migrationwas inhibited by 2,6-dichlorobenzonitrile (DBN), suggestingthe involvement of cell walls in nuclear migration in tobaccoBY-2 cells. In spherical cells formed by culturing protoplasts in the presenceof DBN or propyzamide, the nucleus was located in the centralregion of the cells and was tethered by transvacuolar cytoplasmicstrands. Nuclei in the spherical cells were displaced by disruptingthe actin filaments in the cytoplasmic strands by treating thecells with cytochalasin B (CB), suggesting that the positionof the nucleus in the spherical cells is maintained by actinfilaments. As the nuclei were located in the central regionof the cells even in the presence of propyzamide, microtubulesseem not to be involved in nuclear positioning in the sphericalcells. Actin filaments, but not microtubules, also seem to play animportant role in nuclear positioning in elongated cells. Inthese cells, CB greatly enhanced the displacement of the nucleusby centrifugation, while propyzamide showed little effect. (Received July 22, 1987; Accepted January 15, 1988)  相似文献   

20.
In the present study, we describe the features of programmed cell death of the ovarian nurse cells occurring during vitellogenesis of the silkmoth Bombyx mori. At developmental stage 5, the nurse cells occupy one-half of the follicular volume and obtain a rather spherical shape, while the nurse cell nuclei appear large and elongated, forming impressive projections. At the following stage, stage 6, the nurse cells decrease in size and their shape becomes elliptic. The nuclei remain elongated, being also characterized by large lobes. The lobes of the ramified nurse cell nuclei seem to retain the nucleus in the center of the cell during the dumping of the nurse cell cytoplasm into the growing oocyte. At stage 7, membrane enclosed vacuoles can be easily detected into the nurse cells cytoplasm. Ultrastructural analysis and fluorescent microscopy using mono-dansyl-cadaverine staining of these vacuoles also reveal that they represent autolysosomes. Caspase activity is detected during stage 7, as it is demonstrated by using the Red-VAD-FMK staining reagent. At developmental stages 8 and 9, the nurse cells exhibit chromatin condensation, DNA fragmentation and caspase activity. Finally, during the following stage 10, the nuclear remnants are assembled into apoptotic vesicles, which, after being phagocytosed, are observed in the cytoplasm of adjacent follicle cells. We propose that apoptosis and autophagy operate synergistically during vitellogenesis of B. mori, in order to achieve an efficient and rapid clearance of the degenerated nurse cell cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号