首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testes and sperm cells of two species of halacarid mites, Thalassarachna basteri from the Baltic Sea and Halacarellus thomasi from McMurdo Sound (Antarctica), were investigated. Testes are paired structures, composed of a glandular and a germinal part. The testicular lumen is filled with a very complex secretion that contributes to sperm cell aggregates. Early spermatids of T. basteri display unusual chromatin condensation within the nucleus, but the formation of an acrosomal complex with a small acrosomal vesicle and a long acrosomal filament can be regarded as typical for the group. Tubular invaginations of the plasmalemma occur at the cell periphery. A deep, ring-like infold divides the cell into one part containing the chromatin body and another containing mainly the invaginations and the acrosomal complex. The mature sperm cell is ovoid, aflagellate and surrounded by a distinct secretion sheath. In H. thomasi only a limited number of spermiogenesis stages were observable. Chromatin condensation was rather similar and peripheral invaginations also occurred. However, no acrosomal complex was observed in the early stages. The division of the mature sperm cells into two halves was even more pronounced in H. thomasi, since one half of the cell contained masses of convoluted structures. The same half also contained a structure that remotely resembled an acrosomal complex. The observed differences between T. basteri and H. thomasi sperms support the placing of the two halacarids in separate genera.  相似文献   

2.
Filimonova SA 《Tsitologiia》2005,47(5):417-425
The epithelial lining of testes in Anystis baccarum is glandular and produces a secretory product necessary to form spermatophores. The main stages of spermatogenesis occur in the lumen of the testis in groups of synchronously developing sister cells. Spermatogonia and late spermatids are encircled by glandular cells. Reorganization of developing spermatids is typical of the trombidiform mites and includes formation of the acrosomal complex, cytoplasm elimination, disappearance of the nuclear envelope and formation of invaginations of plasmalemma. The chromatin material condensation is not followed by the entire chromatin body formation. In mature spermatoza, dense chromatin strands (80b nm in diameter) lie along the cell in the peripheral layer of the cytoplasm. Mature spermatozoa lack axonema or any protrusions. A layer of microtubules, visible underneath the outer membrane, may serve for sperm movement in the female genital duct. The acrosomal complex consists of acromal granule, acrosomal filament and subacrosomal substance. This, as well as two aggregates of typical mitochondria, looks plesiomorphic.  相似文献   

3.
The male genital system of the actinotrichid mite Rhagidia halophila is described and compared with other mites and arachnids. The large testes are composed of germinal and glandular parts and produce numerous small sperm cells. The glandular parts are connected via a testicular bridge. Spermiogenesis occurs in cysts containing spermatids in equal stages of development. Cysts of spermatids are embedded in huge somatic cells. The nuclei of the spermatids loose their envelope. Mature sperm cells are simple exhibiting a ring‐shaped chromatin body and lacking an acrosomal complex. They are most similar to the sperm cells of the related mite Linopodes motatorius. The spermatopositor contains the ejaculatory duct divided into a dorsal channel and a ventral channel that are connected via a narrow passage. At its distal end, the spermatopositor is divided into three eugenital lips. The function of the spermatopositor during deposition of the peculiar thread‐like spermatophores is discussed. Details of the sensilla of the spermatopositor and the progenital lips are reported. The genital papillae located on the inner side of the progenital lips exhibit characteristics of cells performing transport of ions and/or water. The results confirm the overall similarity of actinotrichid genital systems, which is profoundly different from that of anactinotrichid mites. With reference to other Arachnida it is corroborated that testes and sperm structure of Actinotrichida are most similar to that of Solifugae. However, synapomorphies between sperm cells of Rhagidia and Solifugae that could suggest a closer relationship between these two taxa as was suggested in earlier studies were not recognizable. On the contrary, the sperm cells of Rh. halophila being devoid of an acrosomal complex appeared to be more apomorphic than those of many other actinotrichid mites as well as Solifugae. J. Morphol. 276:832–859, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Summary

Spermatogenesis and sperm ultrastructure of the trombiculid mite Hirsutiella zachvatkini (Schluger 1948) have been investigated using transmission electron microscopy and compared with other arachnids studied. Sperm differentiation takes place in groups of synchronously developed germ cells of the two large sac-like paired testes. Each testis is composed of a secretory epithelium, which occupies their medio-ventral regions, and of a germinative epithelium situated in the latero-dorsal parts of testes together with large somatic cells. The germ cells are represented on sections by spermatogonia, spermatocytes, early, middle and late spermatids, and mature spermatozoa. Spermatocytes and spermatids contain two centrioles, which disappear afterwards, and a small Golgi-like structure forming an acrosomal cistema. Mature spermatozoa, which lie both within the meshes of somatic cells and also free in the lumen of testes, are compact oval aflagellate cells provided with peripheral channels. They also contain an acrosome, flattened between the cell membrane and the round electron-dense chromatin body, an oval body of lesser density lying in close proximity to the chromatin body, and a group of 5–7 mitochondria with spherically arranged cristae situated immediately behind the nuclear bodies. An acrosomal filament may be sometimes seen beneath the acrosome in the middle spermatids and disappears in the mature spermatozoa. These findings show that the mode of differentiation and pattern of organization of the male sex cells in trombiculid mites are of rather primitive type compared with other acarine spermatozoa.  相似文献   

5.
A fine-structural study of fertilization in Callochiton castaneus has revealed that the mechanism of sperm penetration into the egg is intermediate between the primitive condition found in members of the order Lepidopleurida and the more derived condition found in the Chitonida. C. castaneus sperm have the long needlelike nuclear filament and reduced acrosome that characterizes all Chitonida, but they have retained several plesiomorphic features such as an unspecialized mid-piece and a lack of flagellar reinforcement. As in some Lepidopleurida but unlike any Chitonida, the egg hull in this species comprises a thick, smooth jelly coat permeated by pores that permit sperm rapid access to the vitelline layer. The jelly coat is delicate and quickly dissolves when a sperm concentrate is used, suggesting that excess acrosomal enzymes may be responsible. Once the sperm have penetrated the vitelline layer, the long nuclear filament bridges the gap to cups in the egg membrane. However, once the fertilization membrane is raised, the perivitelline space exceeds the length of the nuclear filament, preventing other sperm from penetrating the egg. A fertilization cone forms around the nuclear filament of the penetrating sperm, but it does not appear to engulf the body of the sperm. Rather, the nuclear chromatin is injected into the egg as a long thread. The remaining sperm organelles are apparently abandoned on the egg surface. If this is the case, it would be a significant departure from fertilization in other molluscs and many other metazoans, in which sperm organelles, such as centrioles and mitochondria, enter the egg. New sperm and egg characters, as well as significant differences in fertilization, indicate that Callochitonidae are basal to all other members of the order Chitonida and may warrant separation as the sister taxon to the suborders Chitonina and Acanthochitonina.  相似文献   

6.
蟋蟀与蝗虫精子顶体复合体的超微结构比较(直翅目)   总被引:1,自引:0,他引:1  
通过对蟋蟀科北京同葫芦GryllusmitratusBurmeister精子顶体复合体超微结构的观察发现其顶体外人有固定的形状,顶体本体内具有一些丝状物,与前人描述的蝗总科精子顶体复合体相比较,虽然两者的顶体复合体都为三层结构,但在顶本以及顶体本结构上却存明显的差异。  相似文献   

7.
Summary

The stages of spermiogenesis in Myobia murismusculi were investigated on the basis of ultrastructural analysis of both the testes and the female organs: receptaculum seminis and seminal duct. The walls of the testes consist of a thin epithelial layer. Germ and secretory cells lie free in the lumen of the testes. In the early stages of differentiation, both cell types represent clusters of sister cells joined by intercellular bridges. Each secretory cell contains prominent RER and Golgi complex, which produce single dense granule. Growing gradually the granule fills the whole volume of the cell's cytoplasm. Mature secretory cells disintegrate and the secretory product discharges into the testicular lumen. The germ cells are represented by the early, the intermediate and the late spermatids as well as the immature sperm (prospermia). Neither spermatogonia nor meiotic figures were observed in adult males. As spermiogenesis starts, numerous narrow invaginations of the outer membrane (peripheral channels) develop on the cell surface. They form a wide circumferential network connected to pinocytotic vesicles. Owing to the secretory activity of the Golgi complex, a large acrosomal granule is formed in the early spermatids. A long acrosomal filament runs along the intranuclear canal. Nuclear material condenses and forms two spherical bodies of different electron density. The lighter one can be observed until the stage of the late spermatids, when the nuclear envelope almost completely disappears. The electron-dense nuclear body transforms into a definite chromatin body, which is observed in the mature sperm as a cup-shaped structure. The late spermatids are characterized by the presence of a large electronlucent vacuole, which seems to be unique for the process of spermiogenesis in Actinedida. After the spermia enter the female genital tract, the peripheral channels disappear as well as the vacuole. The cells form long amoeboid arms with a special microtubular layer underneath the plasma membrane. The chromatin body is encircled by a large acrosomal granule of complex shape provided by long extensions running deep into the cytoplasm. The cytoplasm contains no organelles except for a group of unmodified mitochondria in the post-nuclear region. The main characteristics of the Myobia spermiogenesis are discussed with regard to other actinedid mites.  相似文献   

8.
东方扁虾精子的超微结构   总被引:1,自引:0,他引:1  
利用电镜研究了东方扁虾(Thenus orientalis)精子的形态和结构。精子由核、膜复合物区和顶体区3部分组成。核内含非浓缩的染色质、微管及细纤维丝,外被核膜;5~6条辐射臂自核部位伸出,臂内充满微管。膜复合物区位于核与顶体之间,由许多膜片层结构及其衍生的囊泡共同组成。顶体区由顶体囊和围顶体物质组成,顶体结构复杂,由顶体帽、内顶体物质和外顶体物质等构成;围顶体物质呈细颗粒状,主要分布于顶体囊  相似文献   

9.
The acrosome reaction (AR) was induced in sperm from the brachyuran crustacean Uca tangeri either by mixing male and female gametes in filtered seawater or by treating the spermatozoa with the divalent cation ionophore A23187. This latter method provided a sufficient number of reacted spermatozoa to allow a detailed ultrastructural study of the AR. The process consists of two separate phases: a) initial release of the acrosomal vesicle contents, and b) further elongation of the acrosomal filament, which causes reversal of the rigid capsule limiting the acrosomal vesicle contents. The elongate acrosomal filament consists of an apical perforatorium and a basal columnar structure called here the proximal piece. The former derives from the perforatorium of the uninduced sperm stage with only small ultrastructural changes. The proximal piece forms from myelin-like membrane layers which are initially distributed all around the subacrosomal region and then accumulate in a column at the perforatorial base, thus promoting a sudden forward projection of the perforatorium. The AR in brachyurans is thought to be a passive mechanism that utilizes the negative pressure exerted on the nucleus--caused by emptying of the acrosomal vesicle--for an organized accumulation of membrane-rich material immediately behind the perforatorium, with the final result of the raising of a 3 microns long acrosomal filament.  相似文献   

10.
Spermatozoa and spermiogenesis of the prithine filistatid spider Wandella orana are described. The spider produces coenospermia, i.e. sperm aggregations that include several single sperm cells commonly surrounded by a secretion sheath. One sectioned coenospermium in W. orana contains at least five spermatozoa. During copulation many coenospermia are transferred into the female. Coenospermia are regarded as a peculiar transfer form of sperm which occurs in early derivative spiders such as Liphistiomorphae and Mygalomorphae. The only exception which was found in Araneomorphae until now was the filistatine spider Filistata insidiatrix. Our observation is the second case and supports the view that Filistatidae represent an early derivative taxon. Furthermore, the individual sperm cells show characteristics which also may be regarded as being plesiomorphic. There is a cone-shaped acrosomal vacuole, a very long acrosomal filament, a rather stout nucleus and a small implantation fossa. The axoneme shows the 9x2+3 pattern of microtubules which is synapomorphic in Megoperculata (Uropygi, Amblypygi and Araneae). The finding of coenospermia in two distant taxa of Filistatidae may have consequences for phylogenetic and systematic considerations.  相似文献   

11.
Male germ cells of the greater bandicoot rat, Bandicota indica, have recently been categorized into 12 spermiogenic steps based upon the morphological appearance of the acrosome and nucleus and the cell shape. In the present study, we have found that, in the Golgi and cap phases, round spermatid nuclei contain 10-nm to 30-nm chromatin fibers, and that the acrosomal granule forms a huge cap over the anterior pole of nucleus. In the acrosomal phase, many chromatin fibers are approximately 50 nm thick; these then thickened to 70-nm fibers and eventually became 90-nm chromatin cords that are tightly packed together into highly condensed chromatin, except where nuclear vacuoles occur. Immunocytochemistry and immunogold localization with anti-histones, anti-transition protein2, and anti-protamine antibodies suggest that histones remain throughout spermiogenesis, that transition proteins are present from step 7 spermatids and remain until the end of spermiogenesis, and that protamines appear at step 8. Spermatozoa from the cauda epididymidis have been analyzed by acid urea Triton X-100 polyacrylamide gel electrophoresis for basic nuclear proteins. The histones, H2A, H3, H2B, and H4, transitional protein2, and protamine are all present in sperm extracts. These findings suggest that, in these sperm of unusual morphology, both transition proteins and some histones are retained, a finding possibly related to the unusual nuclear form of sperm in this species.  相似文献   

12.
13.
When isolated bull sperm chromatin is incubated with 0.1 M 2-mercaptoethanol at pH 8, an extensive proteolytic degradation of sperm histone occurs, being accompanied by a marked swelling of the chromatin masses. The degradation of sperm histone is strongly inhibited by monovalent or divalent metal ions. The protease found in isolated bull sperm chromatin possesses properties indistinguishable from those of an acrosomal protease of trypsin-type, acrosin (EC 3.4.21.10), and requires a combination of NaCl, urea and 2-mercaptoethanol for its extraction. Evidence suggests that the protease travels along chromatin strands and hydrolyzes essentially all the sperm histone molecules within the chromatin masses.  相似文献   

14.
U. Fischer 《Zoomorphology》1994,114(4):213-225
Summary Spermatogenesis and sperm ultrastructure of the macrodasyidan gastrotrich Cephalodasys maximus are described by means of transmission electron microscopy. The filiform sperm consists of an acrosomal accessory structure and an acrosomal vesicle, both being surrounded by spiralled material. The successive nuclear helix encloses the spiral-shaped mitochondrion and the axoneme of the flagellum is accompanied by dense strings, three helical elements and peripheral microtubules. During spermiogenesis the acrosomal accessory structure develops first and moves into a cell projection, where the spiral around this acrosomal rod forms. A nuclear section with condensed chromatin and one single fused large mitochondrion follow into the extension, becoming helical. A connecting clasp between nucleus and flagellum shortens to a cap-like structure. Parallel to the acrosomal and nuclear projection the flagellum develops where the spiralled elements and the basal plate form in succession, while the basal body shrinks.  相似文献   

15.
The mature spermatozoa of Buthus occitanus are threadlike in shape and divided into sperm head, middle piece, and end piece. The sperm head is corkscrew shaped anteriorly and in this region bears an unusual acrosomal complex consisting of a ring-shaped acrosomal vacuole associated with a subacrosomal filament and a perinuclear amorphous component. The subacrosomal filament extends posteriorly into a tube-like invagination of the elongated nucleus. The middle piece is characterized by elongated mitochondria which spiral around the anterior part of the flagellum in an extended collar separated from the flagellum by an extracellular cleft, termed the central flagellar tunnel. In addition to the usual 9 × 2 + 2 axonemal pattern in flagella, 9 × 2 + 1 and 9 × 2 + 3 patterns also were observed. The end piece is represented by the free flagellum. Similarities and diversities of scorpionid spermatozoa are discussed with respect to systematic relationships.  相似文献   

16.
Extracts of the jelly coat of eggs of several marine invertebrates are known to induce in homologous sperm morphological changes known as the acrosome reaction. When sperm of the sea urchin Strongylocentrotus purpuratus are treated with low concentrations (0.2 μg fucose/ml) of egg jelly coat or 30 mM CaCl2 in artificial seawater the acrosome reaction does not occur. However, either of these treatments causes the exposure of an acrosin-like enzyme to exogenous substrate and inhibitors. Subsequent addition of jelly coat to 3.7 μg fucose/ml to sperm in this “initial stage” induces the acrosome reaction (as judged by the appearance of an acrosomal filament). This concentration is also effective for untreated sperm. If inhibitors of the enzyme (diisopropylphosphofluoridate or phenylmethanesulfonyl fluoride) are added to sperm in the initial stage, no acrosomal filaments are observed when the high concentration of jelly coat is added. Whether other morphological changes occur in these sperm has not been examined. If phenylmethanesulfonyl fluoride is added 4 sec after the jelly coat, the acrosomal filaments are observed, but the sperm still fail to fertilize eggs. These results suggest a dual role for the acrosin-like enzyme(s), first in the mechanism of the acrosomal filament formation and then in a subsequent event in the fertilization process.  相似文献   

17.
Frozen, hydrated acrosomal bundles from Limulus sperm were imaged with a 400 kV electron cryomicroscope. Segments of this long bundle can be studied as a P1 crystal with a unit cell containing an acrosomal filament with 28 actin and 28 scruin molecules in 13 helical turns. A novel computational procedure was developed to extract single columns of superimposed acrosomal filaments from the distinctive crystallographic view. Helical reconstruction was used to generate a three-dimensional structure of this computationally isolated acrosomal filament. The scruin molecule is organized into two domains which contact two actin subunits in different strands of the same actin filament. A correlation of Holmes' actin filament model to the density in our acrosomal filament map shows that actin subdomains 1, 2, and 3 match the model density closely. However, actin subdomain 4 matches rather poorly, suggesting that interactions with scruin may have altered actin conformation. Scruin makes extensive interactions with helix-loop-beta motifs in subdomain 3 of one actin subunit and in subdomain 1 of a consecutive actin subunit along the genetic filament helix. These two actin subdomains are structurally homologous and are closely spaced along the actin filament. Our model suggests that scruin, which is derived from a tandemly duplicated gene, has evolved to bind structurally homologous but non-identical positions across two consecutive actin subunits.  相似文献   

18.
This study reports ultrastructural and cytochemical aspects of spermiogenesis and synspermia in the brown spider Loxosceles intermedia. The roundish early spermatids are initially interconnected by cytoplasmic bridges, forming groups of four cells. During spermiogenesis, these cells pass through a series of modifications: (1) progressive nuclear condensation brings chromatin into a fibrillar arrangement; (2) the nucleus becomes long and asymmetric, with a short post-centriolar elongation; (3) formation of the long, cone-shaped acrosome and the F-actin acrosomal filament; (4) establishment of the implantation fossa and the 9x2+3 pattern flagellum, which extends away from the sperm cell body. Eventually, the entire cell undergoes twisting and folding resulting in a synspermium, containing four sperm cells in which the flagellum and nucleus are delimitated by the plasma membrane, as individualized structures, but remain involved by the fused remaining cytoplasm and plasma membrane. Reaching the vas deferens, the synspermia are surrounded by a basic glycoproteic secretion. Synspermia are considered a derivative character, probably developed in this Sicariidae species, as well as in other Haplogynae, as an adaptation to improve the reproductive strategy.  相似文献   

19.
Studies on the sperm morphology in scorpions are rare, but the existing investigations already revealed a remarkable interfamiliar diversity. The present study reports for the first time on the spermatozoa and sperm packages of a representative of the family Troglotayosicidae, the troglophylous species Belisarius xambeui. The spermatozoa are characterized by (1) a thread-like nucleus, which is slightly bent anteriorly; (2) an asymmetrical cap-like acrosomal vacuole, which encloses the anterior tip of the nucleus; an acrosomal filament is absent; (3) an axoneme with a 9 + 0 microtubular pattern; (4) a midpiece consisting of elongated mitochondria coiling around the axoneme; the number can vary between 3 and 6 (mostly 4). At the end of spermiogenesis, the spermatozoa aggregate in order to form oval-shaped sperm packages in which all sperm cells show the same orientation. A single package consists of approximately 150 sperms. A secretion sheath is always absent. The present results might provide new characters for further systematic studies and their phylogenetic implications are briefly discussed.  相似文献   

20.
Actin filaments elongate from their membrane-associated ends   总被引:22,自引:19,他引:3       下载免费PDF全文
In limulus sperm an actin filament bundle 55 mum in length extends from the acrosomal vacuole membrane through a canal in the nucleus and then coils in a regular fashion around the base of the nucleus. The bundle expands systematically from 15 filaments near the acrosomal vacuole to 85 filaments at the basal end. Thin sections of sperm fixed during stages in spermatid maturation reveal that the filament bundle begins to assemble on dense material attached to the acrosomal vacuole membrane. In micrographs fo these early stages in maturation, short bundles are seen extending posteriorly from the dense material. The significance is that these short, developing bundles have about 85 filaments, suggesting that the 85-filament end of the bundle is assembled first. By using filament bundles isolated and incubated in vitro with G actin from muscle, we can determine the end “preferred” for addition of actin monomers during polymerization. The end that would be associated with the acrosomal vacuole membrane, a membrane destined to be continuous with the plasma membrane, is preferred about 10 times over the other, thicker end. Decoration of the newly polymerized portions of the filament bundle with subfragment 1 of myosin reveals that the arrowheads point away from the acrosomal vacuole membrane, as is true of other actin filament bundles attached to membranes. From these observations we conclude that the bundle is nucleated from the dense material associated with the acrosomal vacuole and that monomers are added to the membrane-associated end. As monomers are added at the dense material, the thick first-made end of the filament bundle is pushed down through the nucleus where, upon reaching the base of the nucleus, it coils up. Tapering is brought about by the capping of the peripheral filaments in the bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号