首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee KJ  Watson RD 《Peptides》2002,23(5):853-862
In crustaceans, the synthesis of ecdysteroid molting hormones is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced by an eyestalk neuroendocrine system, the X-organ/sinus gland complex. Using sequence analysis software, two regions of the blue crab (Callinectes sapidus) MIH peptide were selected for antibody production. Two 14-mer peptides were commercially synthesized and used to generate polyclonal antisera. Western blot analysis revealed that each antiserum bound to proteins of the predicted size in extracts of C. sapidus sinus glands, and lysates of insect cells containing recombinant MIH. Thin section immunocytochemistry using either antiserum showed specific immunoreactivity in X-organ neurosecretory cell bodies, their associated axons and collaterals, and their axon terminals in the sinus gland.  相似文献   

2.
Crustacean Y-organs produce ecdysteroid molting hormones. Regulation of ecdysteroidogenesis appears to be complex, involving regulatory ligands (including but not limited to molt-inhibiting hormone, an eyestalk neurohormone) and the capacity of the Y-organs to respond to those ligands. Available data indicate cell signaling pathways involving cAMP, cGMP, or both may be involved in regulation of Y-organ function. Trimeric G proteins link receptor occupancy to regulation of intracellular cAMP levels. In studies reported here, we have assessed the occurrence of G proteins in blue crab (Callinectes sapidus) Y-organs, and the link of G proteins to Y-organ function. Bacterial toxin-catalyzed ADP-ribosylation revealed a PTX-sensitive (alpha i-like) protein in Y-organ membranes, but failed to reveal a CTX-sensitive (alpha s-like) protein in Y-organ membranes. Western blotting with primary antibodies raised against conserved regions of mammalian G proteins detected an alpha i-immunoreactive protein (approximately 40 kDa) and two alpha s-immunoreactive proteins (approximately 50 and approximately 57 kDa) in Y-organ membrane preparations. Incubation of Y-organ membrane fractions with cholera toxin significantly suppressed incorporation of [35S]-methionine into TCA-precipitable Y-organ proteins, but had no detectable effect on ecdysteroidogenesis in short-term (6 h) incubations. The combined results indicate that C. sapidus Y-organs possess both Gi and Gs proteins, and that alpha s is functionally linked to regulation of glandular protein synthesis.  相似文献   

3.
4.
Secretion of ecdysteroid molting hormones by crustacean Y-organs is negatively regulated (inhibited) by molt-inhibiting hormone (MIH), a neuropeptide produced by neurosecretory cells in eyestalk ganglia. The inhibitory effect of MIH is mediated by one or more cyclic nucleotide second messengers. In addition, available data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular calcium. However, despite the apparent critical role of calcium in regulating ecdysteroidogenesis, the level of Ca(2+) in Y-organs cells has not been previously determined. In studies reported here, eyestalks were ablated from blue crabs (Callinectes sapidus) to remove the endogenous source of MIH and activate Y-organs. At 0, 3, 6, and 9 days after eyestalk ablation (D0, D3, D6, and D9, respectively), the level of Ca(2+) in Y-organ cells was determined using a fluorescent calcium indicator (Fluo-4), and the hemolymphatic ecdysteroid titer was determined by radioimmunoassay. Calcium fluorescence in D6 Y-organs was 3.5-fold higher than that in D0 controls; calcium fluorescence in D9 Y-organs was 3.9-fold higher than in D0 controls (P<0.05). Measurement of fluorescence along a transect drawn through representative cells indicated that the calcium fluorescence was localized to cytoplasm and not to nuclei. Associated with the increase in intracellular Ca(2+) was a significant increase in the hemolymphatic ecdysteroid titer: The level of ecdysteroids in hemolymph rose from 5.5?ng/mL on D0 to 49.6?ng/mL on D6 and 87.2?ng/mL on D9 (P<0.05). The results are consistent with the hypothesis that ecdysteroidogenesis is stimulated by an increase in intracellular Ca(2+).  相似文献   

5.
6.
In decapod crustaceans, molt hormone (ecdysone) production by Y-organs is suppressed by an eyestalk neurosecretory product, molt-inhibiting hormone (MIH). Environmental stressors are known to delay or prevent molting in crabs. The present study assesses the function of the MIH-Y-organ neuroendocrine system in the crab Cancer antennarius under conditions of daily handling stress. After three days, stressed crabs showed significant suppression of hemolymph ecdysteroid levels, which continued to fall to 20% of controls by day 14. Ecdysteroid titers of stressed crabs returned to prestress levels seven days after stress termination. Ecdysteroid levels in de-eyestalked (DES) crabs rose 160% within 48 hr post-DES. Stressing DES crabs over 16 subsequent days did not significantly alter ecdysteroid levels compared with unstressed DES controls. Handling stress thus depresses hemolymph ecdysteroid levels in the crab, a response that is mediated by eyestalks and appears to result from stress-induced MIH release.  相似文献   

7.
Molt-inhibiting hormone (MIH) negatively regulates the synthesis of ecdysteroid molting hormones by crustacean Y-organs. We report here the expression of blue crab (Callinectes sapidus) MIH in insect cells using recombinant baculovirus. Insect Sf9 cells were transfected with recombinant baculovirus containing a DNA insert encoding the C. sapidus MIH prohormone (signal sequence plus mature hormone). The construct was designed to yield a mature, fully processed recombinant MIH (recMIH). Several baculovirus recombinants showing no contamination with wild-type viral DNA were subsequently analyzed for their ability to direct expression of recMIH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins from infected cells revealed time-dependent expression of two proteins of approximately the predicted size for the C. sapidus MIH prohormone and mature hormone. Western blot results (using antiserum against MIH of Carcinus maenas) indicated that the proteins were MIH-immunoreactive. N-Terminal amino acid sequence data and mass spectral analysis indicated the expressed proteins were of the correct sequence and molecular mass. Cell lysates containing the recombinant protein dose-dependently suppressed the synthesis of ecdysteroids by Y-organs in vitro. We anticipate the recombinant peptide will prove useful for studies of the structure and function of MIH.  相似文献   

8.
1. A number of invertebrate species releases precipitins into the environment. This process is apparently part of an externally directed immunologic system. 2. A saline solution of precipitins released from the blue crab, Callinectes sapidus, provided a reagent that produced two different precipitation reactions with proteins from the sera of human individuals. 3. One of the reaction variants was also detected with mammalian antiserum, the other was not. The former variant was associated with a medical condition: hypergammaglobulinemia. 4. Saline reagents from different invertebrate species may prove useful in clinical diagnosis and for revealing new human protein polymorphisms.  相似文献   

9.
ABSTRACT: BACKGROUND: Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. RESULTS: A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5[PRIME] and 3[PRIME] RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-I was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. CONCLUSIONS: We report the ontogenetic variation in CasAQP-1 expression during the larval development of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.  相似文献   

10.
The presence of an iron-binding protein in the hemolymph of the blue crab (Callinectes sapidus) was detected by gel filtration of 59Fe-labeled hemolymph. The iron-binding protein was purified to homogeneity by ion exchange chromatography. 2. This protein has a mol. wt of 155,000 and consists of a single polypeptide chain with an isoelectric point of 5.0. 3. Analysis of the iron-loaded protein indicates that it has a high affinity for iron and the capacity to bind approximately 10 atoms iron/molecule protein. 4. The isolation of a specific iron-binding protein from the blue crab (Callinectes sapidus) provides additional support for the proposal that such proteins are an ancient evolutionary development not necessarily linked to the appearance of iron proteins (hemoglobin and hemerythrin) as a means for oxygen transport.  相似文献   

11.
Paired Y-organs secrete ecdysteroid hormones that control cycles of growth and molting in crustaceans. Y-Organs are regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide produced and released by the X-organ/sinus gland complex of the eyestalks. In the present studies, crab (Callinectes sapidus) Y-organs were incubated in vitro in the presence of [(35)S]methionine, and cyclic nucleotide analogs or experimental agents that influence the cAMP signaling pathway. In 4-hr incubations, 8-Br-cAMP and db-cAMP (but not 8-Br-cGMP) suppressed incorporation of [(35)S]methionine into Y-organ proteins; the effect of 8-Br-cAMP was concentration-dependent. Autoradiograms of radiolabeled Y-organ proteins separated on SDS-PAGE gels indicated the effect of 8-Br-cAMP was general (as opposed to selective) suppression of protein synthesis. Addition of both forskolin (an adenylyl cyclase activator) and 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) likewise suppressed incorporation of [(35)S]methionine into Y-organ proteins. Cycloheximide (a protein synthesis inhibitor) suppressed incorporation of [(35)S]methionine into Y-organ proteins and secretion of ecdysteroids. The combined results suggest that cAMP is involved in regulation of protein synthesis in C. sapidus Y-organs. We are currently investigating the link of protein synthesis to ecdysteroid production, and the possibility of cross-talk between cAMP and other cellular signaling pathways in Y-organs.  相似文献   

12.
An important lipoprotein in the hemolymph of crustaceans is LpI. It transports lipid to peripheral tissues and also has a role in crustacean immune recognition. We employed a monoclonal antibody specific for the LpI peptide to demonstrate by ELISA, western blot and immunohistochemistry the appearance of LpI during development of Callinectes sapidus, the blue crab. LpI was first found in stage 5 embryos and appeared to be synthesized by lateral basophilic cuboidal cells that demonstrated cytoplasmic immunoreactivity for LpI at their interface with the yolk mass. The embryonic cuboidal cells bore a strong cytologic resemblance to the hepatopancreas cells of later stages (zoea, megalopae, adults), which were also immunoreactive for LpI.  相似文献   

13.
Secretion of ecdysteroid molting hormones by crustacean Y-organs is suppressed by molt-inhibiting hormone (MIH). The suppressive effect of MIH on ecdysteroidogenesis is mediated by one or more cyclic nucleotide second messengers. In addition, existing data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular Ca(++). Despite the apparent critical role of calcium in regulating ecdysteroidogenesis, the level of Ca(++) in Y-organ cells has not been previously measured during a natural molting cycle for any crustacean species. In studies reported here, a fluorescent calcium indicator (Fluo-4) was used to measure Ca(++) levels in Y-organs during a molting cycle of the blue crab, Callinectes sapidus. Mean calcium fluorescence increased 5.8-fold between intermolt (C4) and stage D3 of premolt, and then dropped abruptly, reaching a level in postmolt (A) that was not significantly different from that in intermolt (P>0.05). The level of ecdysteroids in hemolymph of Y-organ donor crabs (measured by radioimmunoassay) showed an overall pattern similar to that observed for calcium fluorescence, rising from 2.9 ng/mL in intermolt to 357.1 ng/mL in D3 (P<0.05), and then dropping to 55.3 ng/mL in D4 (P<0.05). The combined results are consistent with the hypothesis that ecdysteroidogenesis is stimulated by an increase in intracellular Ca(++).  相似文献   

14.
Carbonic anhydrase (CA) activity in the gills of the euryhaline blue crab, Callinectes sapidus, was measured in response to acute low-salinity transfer and treatment with eyestalk ablation (ESA) in an attempt to elucidate potential regulatory mechanisms of salinity-mediated CA induction. ESA alone resulted in an approximate doubling of CA activity in the posterior, ion-transporting gills of crabs acclimated to 35 ppt. Transfer of intact crabs to 28 ppt, a salinity at which the blue crab is still an osmotic and ionic conformer, had no effect on CA activity, but treatment with ESA prior to transfer resulted in a 5-fold increase. Hemolymph osmolality was unaffected by ESA. There was a 7-fold induction of CA activity in posterior gills of intact crabs transferred from 35 to 15 ppt, and this was potentiated by about 100% by ESA. Hemolymph osmolality was slightly elevated in the ESA-treated crabs. CA activity in anterior gills did not increase in response to any treatment. Hemolymph concentrations of methyl farnesoate (MF) were measured for all experimental animals. MF concentrations were undetectable in all intact crabs, regardless of salinity. Treatment with ESA resulted in elevated levels of hemolymph MF, but these levels were still relatively low and unrelated to salinity. These results suggest that CA induction is under the control of a regulatory substance located in the eyestalk. This substance appears to be a CA repressor, keeping CA expression at low levels in the gills of crabs acclimated to high salinity. Exposure to low salinity, or treatment with ESA, removes the effects of this putative repressor and allows CA induction to occur.  相似文献   

15.
1. Serotonin-containing neurons were localized immunocytochemically in crab cerebral ganglia and their extensions in the eyestalk.2. Approximately 155 serotonergic cells were found in identifiable regions of the brain, the largest number being localized in the anterior cell cluster (40 reactive cells) and the bilateral anterior olfactory cell clusters (40 cells each).3. Serotonin immunoreactive cells were found in all three ganglionic divisions of the eyestalk. The medulla terminalis contains up to 15 reactive cells, of which only one occurs in the X-organ (origin of neurosecretory axons in the sinus gland nerve). The m. terminalis also contains three identifiable cells in the mediolateral border adjacent to the sinus gland nerve, of which one is a giant (up to 100 μm diameter), designated MT-1. The axon of MT-1 branches profusely after entering the m. terminalis neuropil.4. No serotonin immunoreactivity was apparent within the sinus gland, the sinus gland nerve or the organ of Bellonci.5. These findings are discussed in relation to the known serotonergic control of peptide hormone secretion by the eyestalk X-organ-sinus gland complex.  相似文献   

16.
17.
Ecdysteroid secretion in vitro by gland quarters and dispersed cells of ecdysial glands (Y-organs) of the crab, Cancer antennarius Stimpson, was characterized. Optimum culture conditions are reported for maximum, sustained (72 hr) secretion and maintenance of cell viability in activated Y-organs obtained from de-eyestalked donors. Addition in vitro of eyestalk ganglia extracts containing the putative molt-inhibiting hormone (MIH) inhibited ecdysteroid production dose-dependently in the range of 0.1-4.0 and 0.01-4.0 eyestalk equivalents of MIH for gland quarters and dispersed cells, respectively. Inhibition by MIH was reversible, tissue specific as to source of MIH activity, and did not affect cell viability relative to controls. The results of replicate incubations of gland quarters with MIH were analyzed with formal statistics of parallel-line assay. The inhibitory action on ecdysteroid secretion is shown to be reproducibly linear and parallel in the dosage range, 0.1-4.0 eyestalk equivalents, amenable to calculation of relative potency among successive extracts, and of sufficiently high precision to serve as an MIH bioassay. Also, the results of these studies support the hypothesis that control of Y-organs by the eyestalks is physiologically direct.  相似文献   

18.
For centuries, people in the Chesapeake Bay watershed have harvested and consumed blue crabs (Callinectes sapidus). Historically, the production of the crabs was intimately connected to the work and knowledge of commercial watermen. In recent years, declining crab populations have resulted in an increased local use of pasteurized crab meat imported from Asia and South America. Also emerging is an ecological discourse that emphasizes pollution reduction to save crabs to eat. In this article, I analyze these production and consumption changes for Chesapeake Bay blue crabs within a broad-ranging framework of cultural models and environmental anthropology. Explicit textual information increasingly suggests that the cultural model of Chesapeake blue crabs as food is one of crab cakes made (with imported crab meat) in the "local tradition" and, to a lesser degree so far, is an emerging discourse presenting blue crabs as a culinary poster child for antipollution campaigns.  相似文献   

19.
Mouse antiserum against C-terminal amide of Pem-CMG (a peptide in the family of CHH/MIH/GIH) penta-deca peptide (RPRQRNQYRAALQRLamide=CMG-15) was generated and used for localization of the peptide in tissue and extract of the eyestalk of Penaeus monodon by means of immunohistochemistry and dot-ELISA in comparison with anti-T+ antiserum (T+=YANAVQTVamide : the putative C-terminal amide of crustacean hyperglycemic hormone (CHH) of Macrobrachium rosenbergii). The anti-CMG-15 antiserum did not show cross-reactivity to T+ peptide by dot-ELISA and vice versa for anti-T+ antiserum. In dot-ELISA of eyestalk extract of P. monodon after one step separation by RP-HPLC, anti-CMG-15 antiserum recognized different peptide fractions (F38-39) from those recognized by anti-T+ antiserum (F19, 40-41 and 47-51). Most of the T+ immunoreactive fractions (except F19) show higher hyperglycemic activity than the CMG immunoreactive fractions. In immunohistochemical localization, anti-CMG antiserum recognized only 2-3 neurons in medulla terminalis X-organ complex (MTXO) with long processes terminated in the sinus gland. The CMG-immunoreactive neurons were clearly distinct from CHH containing neurons situated in the same area. This evidence confirms the existing of CMG peptide which may play distinct roles from CHHs in hormonal regulation in P. monodon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号