首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
2.
The evolutionary origin of the tritocerebral neuromere, which is a brain segment located at the junction between the supra- and subesophageal ganglia in most mandibulates (arthropods such as crustaceans and insects), is a subject rich in contentious debate. Various models have argued that the tritocerebrum came from a segmental nerve cord ganglia that was recruited into the head during the course of arthropod evolution. However, despite much thought on the subject, the origin of the tritocerebrum remains obscure. Here I describe the development of the tritocerebral commissure in Drosophila and demonstrate that the tritocerebral and mandibular commissures actually form as one commissure and then separate in a manner very similar to how the anterior and posterior commissures of a ventral nerve cord neuromere form. I propose that the tritocerebral neuromere originated from the splitting of an ancestral neuromere located in the anterior subesophageal ganglion into distinct tritocerebral and mandibular neuromeres. Also, I discuss the problem of arthropod brain neuromere homology in reference to this hypothesis.  相似文献   

3.
4.
5.
6.
The neuronal connections of the tritocerebral commissures of Periplaneta americana were studied in the brain-suboesophageal ganglion complex and the stomatogastric nervous system by means of heavy metal iontophoresis through cut nerve ends followed by silver intensification. The tritocerebral commissure 1 (Tc1) contains mainly the processes of the subpharyngeal nerve (Spn) whose neurons are located in both tritocerebral lobes and in the frontal ganglion. Some neurons of the frontal ganglion project through the Tc1 to the contralateral tritocerebrum. A few fibers in this commissure were observed projecting to the protocerebrum and the suboesophageal ganglion. There are tritocerebral neurons which pass through the Tc1 or the tritocerebral commissure 2 (Tc2) and extend on into the stomatogastric nervous system. One axon of a descending gaint neuron appears in the Tc2. This neuron lies in the tritocerebrum and connects the brain to the contralateral side of the ventral nerve cord. In addition, sensory fibers of the labral nerve (Ln) traverse both commissures to the opposite tritocerebrum. The anatomical and physiological relevance of the identified neuronal pathways is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

7.
8.
9.
The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.  相似文献   

10.
The central complex is a major neuropilar structure in the insect brain whose distinctive, modular, neuroarchitecture in the grasshopper is exemplified by a bilateral set of four fibre bundles called the w, x, y and z tracts. These columns represent the stereotypic projection of axons from the pars intercerebralis into commissures of the central complex. Each column is established separately during early embryogenesis in a clonal manner by the progeny of a subset of four identified protocerebral neuroblasts. We report here that dye injected into identified pioneers of the primary brain commissure between 31 and 37% of embryogenesis couples to cells in the pars intercerebralis which we identify as progeny of the W, X, Y, or Z neuroblasts. These progeny are the oldest within each lineage, and also putatively the first to project an axon into the protocerebral commissure. The axons of pioneers from each tract do not fasciculate with one other prior to entry into the commissure, thereby prefiguring the modular w, x, y, z columns of the adult central complex. Within the commissure, pioneer axons from columnar tracts fasciculate with the growth cones of identified pioneers of the existing primary fascicle and do not pioneer a separate fascicle. The results suggest that neurons pioneering a columnar neuroarchitecture within the embryonic central complex utilize the existing primary commissural scaffold to navigate the brain midline.  相似文献   

11.
 The ventral nerve cord of arthropods is characterised by the organisation of major axon tracts in a ladder-like pattern. The individual neuromeres are connected by longitudinal connectives whereas the contra-lateral connections are brought about through segmental commissures. In each neuromere of the embryonic central nervous system (CNS) of Drosophila an anterior and a posterior commissure is found. The development of these commissures requires a set of neurone-glia interactions at the midline. Here we show that both the anterior as well as the posterior commissures are subdivided into three axon-containing regions. Electron microscopy of the ventral nerve cord of mutations affecting CNS midline cells indicates that the midline glial cells are required for this subdivision. In addition the midline glial cells appear required for a crossing of commissural growth cones perpendicular to the longitudinal tracts, since in mutants with defective midline glial cells commissural axons frequently cross the midline at aberrant angles. Received: 6 July 1997 / Accepted: 27 August 1997  相似文献   

12.
We investigated brain development in the horseshoe crab Limulus polyphemus and several other arthropods via immunocytochemical methods, i.e. antibody stainings against acetylated alpha-tubulin and synapsin. According to the traditional view, the first appendage-bearing segment in chelicerates (the chelicerae) is not homologous to the first appendage-bearing segment of mandibulates (first antenna, deutocerebrum) but to the segment of the second antenna (tritocerebrum) or the intercalary segment in hexapods and myriapods. Accordingly, the segment of the deutocerebrum in chelicerates would be completely reduced. The main arguments for this view are: (1) the postoral origin of the cheliceral ganglion, (2) a poststomodaeal commissure, and (3) a connection of the cheliceral ganglion to the stomatogastric system. Our data show that these arguments are not convincing. During the development of horseshoe crabs there is no evidence for a former additional segment in front of the chelicerae. Instead, comparison of the brain structure (neuropil ring) between chelicerates, crustaceans and insects shows remarkable similarities. Furthermore, the cheliceral commissure in horseshoe crabs runs mainly praestomodaeal, which would be unique for a tritocerebral commissure. An unbiased view of the developing nervous system in the "head" of chelicerates, crustaceans and insects leads to a homologisation of the cheliceral segment and that of the (first) antenna (= deutocerebrum) of mandibulates that is also congruous to the interpretation of the Hox gene expression patterns. Thus, our data provide morphological evidence for the existence of a chelicerate deutocerebrum.  相似文献   

13.
Summary Neurones in the suboesophageal ganglion of the locust Schistocerca gregaria were stained with an antiserum raised against gamma amino butyric acid (GABA). This ganglion consists of the fused mandibular, maxillary and labial neuromeres. Immunoreactive cell bodies of similar size and distribution occur in the lateral, ventral and middorsal regions of all three neuromeres. Approximately 200 cell bodies stain in both the mandibular and maxillary neuromeres and 270 in the labial neuromere. A few distinctly larger cells occur in the ventral groups and one large pair occurs in the lateral group of the maxillary neuromere. Dorsal commissures DCIV and DCV are composed mainly of stained fibres, while DCI–DCIII are largely unstained. A ventral commissure also stains in the maxillary neuromere. All longitudinal tracts contain both stained and unstained fibres. Many processes within the neuropil are also immunoreactive. A stained axon is found in the posterior tritocerebral commissure which enters the anterior dorsal region of the mandibular neuromere. The salivary branch of the 7th nerve contains one stained axon and two axons stain in nerve 8 which innervates neck muscles.  相似文献   

14.
In the developing vertebrate brain, growing axons establish a scaffold of axon tracts connected across the midline via commissures. We have previously identified a population of telencephalic neurons that express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM that is involved in axon guidance in the forebrain. These axons arise from the presumptive telencephalic nucleus, course caudally along the principal longitudinal tract of the forebrain, cross the ventral midline in the midbrain, and then project to the contralateral side of the brain. In the present study we have investigated mechanisms controlling the growth of these axons across the ventral midline of the midbrain. The axon guidance receptor DCC is expressed by the NOC-2 population of axons both within the longitudinal tract and within the ventral midbrain commissure. Disruption of DCC-dependent interactions, both in vitro and in vivo, inhibited the NOC-2 axons from crossing the ventral midbrain. Instead, these axons grew along aberrant trajectories away from the midline, suggesting that DCC-dependent interactions are important for overcoming inhibitory mechanisms within the midbrain of the embryonic vertebrate brain. Thus, coordinated responsiveness of forebrain axons to both chemostimulatory and chemorepulsive cues appears to determine whether they cross the ventral midline in the midbrain.  相似文献   

15.
The commissures represent a major neuroarchitectural feature of the central nervous system of insects and vertebrates alike. The adult brain of the grasshopper comprises 72 such commissures, the first of which is established in the protocerebral midbrain by three sets of pioneer cells at around 30% of embryogenesis. These pioneers have been individually identified via cellular, molecular and intracellular dye injection techniques. Their ontogenies, however, remain unclear. The progenitor cells of the protocerebral midbrain are shown via Annulin immunocytochemistry to be compartmentalized, belonging either to the protocerebral hemispheres or the so-called median domain. Serial reconstructions based on bromodeoxyuridine incorporation confirm that their lineages do not intermingle. Dye injection into progenitor cells and progeny confirms this compartmentalization, and reveals that none of the pioneers are associated with a lineage of cells deriving from a protocerebral neuroblast or midline precursor. Immunocytochemical data as well as dye injection into identified pioneers over several developmental stages indicate that they differentiate directly from epithelial cells, but not from classical progenitor cells. That the commissural pioneers of the protocerebrum represent modified epithelial cells involves a different ontogeny to that described for pioneers in the ventral nerve cord, but parallels that of pioneer neurons of the peripheral nervous system.  相似文献   

16.
17.
The brain and subesophageal ganglion of male Aedes aegypti (L.) (Diptera : Culicidae) are described from cryofractures and silver-stained, semithin (0.5 μm) serial sections of whole heads observed in the scanning and light microscopes. The brain and subesophageal ganglion of male A. aegypti are fused. The major structures of the brain include the protocerebral lobes and bridge, the mushroom bodies, central complex of the protocerebrum, the mechanosensory regions and olfactory loves of the deutocerebrum, and the tritocerebrum. Major commissures of the brain are the anterior optic tract, central commissure, posterior dorsal commissure, and subesophageal commissure. The structural associations of brain components with each other and the subesophageal ganglion, as well as the paths of the major nerve tracts in male A. aegypti are described and compared with those in other Diptera.  相似文献   

18.
New surgical technique for macrostomia repair with two triangular flaps   总被引:5,自引:0,他引:5  
Our new surgical procedure with two triangular flaps for macrostomia repair allows us to achieve all three therapeutic goals, including formation of symmetric lips and commissures of the mouth, reconstruction of the orbicularis muscle of mouth to restore labial function, and reconstruction of the commissure of the mouth with a natural looking contour. Furthermore, the position of the commissure of the mouth can be adjusted intraoperatively according to the extent of macrostomia. As reported here, our method provides very satisfactory clinical results and is relatively easy to perform. Thus, we believe that our method can serve as a standard for the surgical treatment of macrostomia.  相似文献   

19.
Three major axon pathways cross the midline of the vertebrate forebrain early in embryonic development: the postoptic commissure (POC), the anterior commissure (AC) and the optic nerve. We show that a small population of Gfap+ astroglia spans the midline of the zebrafish forebrain in the position of, and prior to, commissural and retinal axon crossing. These glial ;bridges' form in regions devoid of the guidance molecules slit2 and slit3, although a subset of these glial cells express slit1a. We show that Hh signaling is required for commissure formation, glial bridge formation, and the restricted expression of the guidance molecules slit1a, slit2, slit3 and sema3d, but that Hh does not appear to play a direct role in commissural and retinal axon guidance. Reducing Slit2 and/or Slit3 function expanded the glial bridges and caused defasciculation of the POC, consistent with a ;channeling' role for these repellent molecules. By contrast, reducing Slit1a function led to reduced midline axon crossing, suggesting a distinct role for Slit1a in midline axon guidance. Blocking Slit2 and Slit3, but not Slit1a, function in the Hh pathway mutant yot (gli2DR) dramatically rescued POC axon crossing and glial bridge formation at the midline, indicating that expanded Slit2 and Slit3 repellent function is largely responsible for the lack of midline crossing in these mutants. This analysis shows that Hh signaling helps to pattern the expression of Slit guidance molecules that then help to regulate glial cell position and axon guidance across the midline of the forebrain.  相似文献   

20.
In this paper, we propose an ontogeny for previously identified cells from the median domain in the midline of the embryonic brain of the grasshopper Schistocerca gregaria. The so-called lateral cells (LCs) are characteristically located laterally within the median domain at its border with the protocerebral hemispheres. The LC occurs singly and can be identified in the early embryo on the basis of their expression of the cell surface lipocalin Lazarillo. Using immunocytochemical, dye injection, electron microscopical and histological methods, we show that these LC are neurons and derive as postmitotic cells directly from the epithelium of the median domain. Further, they and the other identified cells of the median domain such as the protocerebral commissure pioneers (PCP), co-express the Mes-3 antigen, consistent with a derivation from the mesectodermal germ layer of the embryo. Subsequent to axogenesis, electron microscopy reveals that these Mes-3-expressing LC fasciculate with the co-expressing PCPs within the developing protocerebral commissure. We present a model for the origin of all these cells based on histological data and bromodeoxyuridine incorporation. The model suggests a delamination of cells from the mesectoderm followed by a migration to their ultimate sites within the median domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号