首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptodora kindtii, a large predaceous cladoceran, is among the most deviant species of the Cladocera. Therefore, its phylogenetic position has traditionally proven difficult to determine. Its many peculiar features include, among others, long, stenopodous, forwardly directed trunk limbs, a posteriorly placed dorsal brood pouch, a tri-lobed lower lip, and a long, segmented abdomen. This study describes the ontogeny of L. kindtii (Haplopoda), including general body proportions, appendages, the carapace, and other external structures in an attempt to facilitate the comparison of its aberrant morphology to that of other branchiopods. In general, the early embryos are similar to the early embryos of other cladoceran taxa with respect to body shape and size and position and orientation of the early limb buds. Many of the unusual features of L. kindtii appear late in ontogeny. The carapace appears at an early stage as a pair of dorsolateral swellings in a position corresponding to the gap between the mandibles and the first pair of trunk limbs; it later becomes posteriorly transposed by a gradual fusion of its more anterior parts to the dorsal side of the thorax. The tri-lobed "lower lip," under the labrum of the late embryo and the adult, develops as a fusion of the first maxillae (lateral lobes) to an elevated sternal region behind the mouth (median lobe). The stenopodous, segmented trunk limbs in the adult develop from embryonic, elongate, subdivided limb buds, similar to those seen in early stages of other branchiopods. Two conflicting possibilities for the phylogeny of the Cladocera, involving two different positions of L. kindtii (Haplopoda), are discussed. Several characters support a sister-group relationship between the Haplopoda and Onychopoda. However, some characters support the Anomopoda and Onychopoda as sister groups, leaving the Haplopoda outside this clade. In contrast to recent suggestions, we prefer to retain the term "Cladocera" in its original sense as comprising the Haplopoda, Ctenopoda, Anomopoda, and Onychopoda.  相似文献   

2.
In this study, the condensation of the three thoracic and 11 abdominal segmental ganglia to form a prothoracic and central nerve mass during embryogenesis is described. During katatrepsis, many changes occur in the organization of these ganglia; this study suggests that some of these changes are caused by mechanical forces acting on the ventral nerve cord at this time. The ventral nerve cord begins its anterior migration and coalescence ten hours after katatrepsis and is completed 63 hours later. The central ganglion is made up of the meso- and metathoracic ganglia and seven abdominal ganglia. Intrasegmental median cord nuclei are shown to form glial elements in the median sagittal plane of the neuropile and in the longitudinal connectives. Intersegmental median cord neuroblasts migrate into the posterior gangliomeres but, apparently, degenerate soon after katatrepsis. Lateral cord cells bordering on the neuropile form a glial investment that surrounds this fiber tract region. Peripheral lateral cord cells are shown to form the cells of the outer ganglionic sheath, the perineurium.  相似文献   

3.
The study investigates activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria during wind-elicited tethered flight. Neurons with ascending projections from the ventral nerve cord to the lateral accessory lobes showed flight-associated excitations which were modulated in the flight motor rhythm. Descending neurons with ramifications in the lateral accessory lobes were tonically excited corresponding to flight duration. The onset of wind-elicited responses in the descending neurons preceded the onset of flight motor activity by 22–60 milliseconds. Neurons connecting the lateral accessory lobes with the central body, the anterior optic tubercles, or other brain areas showed a variety of responses including activity changes during flight initiation and flight termination. Activity in many of these neurons was less tightly coupled to the flight situation and often returned to background levels before flight was terminated. Most of the recorded neurons responded, in addition, to stationary visual stimuli. The results suggest that the lateral accessory lobes in the locust brain are integrative links between the central body, visual pathways, and the ventral nerve cord. The possible involvement of these brain areas in flight control is discussed.  相似文献   

4.
The organization of the central nervous system of an "aplacophoran" mollusc, Chaetoderma japonicum, is described as a means to understand a primitive condition in highly diversified molluscan animals. This histological and immunocytochemical study revealed that C. japonicum still retains a conservative molluscan tetra-neural plan similar to those of neomenioids, polyplacophorans, and tryblidiids. However, the ventral and lateral nerve cords of C. japonicum are obviously ganglionated to various degrees, and the cerebral cord-like ganglia display a lobular structure. The putative chemosensory networks are developed, being composed of sensory cells of the oral shield, eight precerebral ganglia, and eight neuropil compartments that form distinct masses of neurites. In the cerebral cord-like ganglia, three anterior, posterior, and dorsal lobes are distinguished with well-fasciculated tracts in their neuropils. Most neuronal somata are uniform in size, and no small globuli-like cell clusters are found; however, localized serotonin-like immunoreactivity and acetylated tubulin-containing tracts suggest the presence of functional subdivisions. These complicated morphological features may be adaptive structures related to the specialized foraminiferan food in muddy bottoms. Based on a comparative scheme in basal molluscan groups, we characterize an independent evolutionary process for the unique characters of the central nervous systems of chaetoderms.  相似文献   

5.
Arthropods and in particular crustaceans show a great diversity concerning their limb morphology. This makes the homologization of limbs and their parts and our understanding of evolutionary transformations of these limb types problematical. To address these problems we undertook a comparative study of the limb development of two representatives of branchiopod crustaceans, one with phyllopodous the other with stenopodous trunk limbs. The trunk limb ontogeny of a 'larger branchiopod', Cyclestheria hislopi ('Conchostraca') and the raptorial cladoceran Leptodora kindtii (Haplopoda) has been examined by various methods such as SEM, Hoechst fluorescent stain and expression of the Distal-less gene. The early ontogeny of the trunk limbs in C. hislopi and L. kindtii is similar. In both species the limbs are formed as ventrally placed, elongate, subdivided limb buds. However, in C. hislopi, the portions of the early limb bud end up constituting the endites and the endopod of the phyllopodous filtratory limb in the adult, whereas in L. kindtii, similar limb bud portions end up constituting the actual segments in the segmented, stenopodous, and raptorial trunk limbs of the adults. Hence, the portions of the limbs corresponding to the endites of the phyllopodous trunk limbs in C. hislopi (and other 'larger branchiopods') are homologous to the segments of the stenopodous trunk limbs in L. kindtii. It is most parsimonious to assume that the segmented trunk limbs in L. kindtii have developed from phyllopodous limbs with endites and not vice versa. This study has demonstrated at least one way in which segmented limbs have been derived from phyllopodous, multi-lobate limbs during evolution. Similar pathways can be assumed for the evolution of stenopodous, segmented and uniramous limbs in other crustaceans. Irrespective of the differences in the adult limb morphology, the early patterning of arthropod limbs seems to follow a similar principle.  相似文献   

6.
Summary Antiserum to arginine-vasopressin has been used to characterise the pair of vasopressin-like immunoreactive (VPLI) neurons in the locust. These neurons have cell bodies in the suboesophageal ganglion, each with a bifurcating dorsal lateral axon which gives rise to predominantly dorsal neuropilar branching in every ganglion of the ventral nerve cord. There are extensive beaded fibre plexuses in most peripheral nerves of thoracic and abdominal ganglia, but in the brain, the peripheral plexuses are reduced while neuropilar branching is more extensive, although it generally remains superficial. An array of fibres runs centripetally through the laminamedulla chiasma in the optic lobes. Lucifer Yellow or cobalt intracellular staining of single VPLI cells in the adult suboesophageal ganglion shows that all immunoreactive processes emanate from these two neurons, but an additional midline arborisation (that was only partially revealed by immunostaining) was also observed. Intracellularly staining VPLI cells in smaller larval instars, which permits dye to reach the thoracic ganglia, confirms that there is no similar region of poorly-immunoreactive midline arborisation in these ganglia. It has been previously suggested that the immunoreactive superficial fibres and peripheral plexuses in ventral cord ganglia serve a neurohaemal function, releasing the locust vasopressin-like diuretic hormone, F2. We suggest that the other major region of VPLI arborisation, the poorly immunoreactive midline fibres in the suboesophageal ganglion, could be a region where VPLI cells receive synaptic input. The function of the centripetal array of fibres within the optic lobe is still unclear.Abbreviations AVP arginine vasopressin - DIT dorsal intermediate tract - FLRF Phe-Leu-Arg-Phe - FMRF-amide Phe-Met-Arg-Phe-amide - LDT lateral dorsal tract - LVP lysine vasopressin - MDT median dorsal tract - MVT median ventral tract - SEM scanning electron microscopy - SOG suboesophageal ganglion - VIT ventral intermediate tract - VNC ventral nerve cord - VPLI vasopressin-like immunoreactive  相似文献   

7.
The systematic position of Polygordiidae is still under debate. They have been assigned to various positions among the polychaetes. Recent molecular analyses indicate that they might well be part of a basal radiation in Annelida, suggesting that certain morphological characters could represent primitive character traits adopted from the annelid stem species. To test this hypothesis, an investigation of the muscular and nervous systems by means of immunological staining and confocal laser scanning microscopy and transmission electron microscopy was conducted. With the exception of the brain, the nervous system is entirely basiepidermal and consists of the brain, the esophageal connectives, the subesophageal region, the ventral nerve cord and several smaller longitudinal nerves. These are connected by a considerable number of ring nerves in each segment. The ventral nerve cord is made up of closely apposed longitudinal neurite bundles, a median and two larger lateral ones. Since distinct ganglia are lacking, it represents a medullary cord. The muscular system mainly consists of longitudinal fibers, regularly distributed oblique muscles and strong septa. The longitudinal fibers form a right and a left unit separated along the dorsal midline, each divided into a dorsal and ventral part by the oblique muscles. Anteriorly, the longitudinal musculature passes the brain and terminates in the prostomium. There is no musculature in the palps. In contrast to earlier observations, regularly arranged minute circular muscle fibers are present. Very likely, a basiepithelial and non-ganglionic organization of the ventral nerve cord as well as an orthogonal nervous system represent plesiomorphic characters. The same applies for the predominance of longitudinal muscle fibers.  相似文献   

8.
The production of sex pheromone in many moths is regulated by the neuropeptide PBAN (pheromone biosynthesis-activating neuropeptide). Studies in a number of species have shown that pheromone production can be linked to a hemolymph factor and that continuity in the ventral chain of ganglia is not required. However, it has recently been shown that production of pheromone in the gypsy moth, Lymantria dispar, is largely prevented in females with a transected ventral nerve cord (VNC). To begin to understand the cellular basis for this dependence on the VNC, we sought to determine the distribution of PBAN in the central nervous system and its neurohemal sites, including those associated with the VNC. Using an antiserum to L. dispar-PBAN in immunocytochemical methods, we have mapped the distribution of PBAN-like immunoreactivity (PLI). PLI is found in three clusters of ventral midline somata in the subesophageal ganglion (SEG), in three clusters of midline cells in each segmental ganglion, and in bilateral pairs of cells located posterolaterally in each abdominal ganglion. The SEG cells comprise both interneurons, with endings in the neuropil of each segmental ganglion, as well as neurosecretory cells, with endings in the retrocerebral complex and in an unusual neurohemal structure near the anterior aspect of the SEG. The latter structure, which we have named the corpus ventralis, receives axons from the two anterior clusters of cells in the SEG. In the abdominal ganglia, the posterolateral clusters of cells have immunoretroreactive axons exiting the ganglia via the ventral nerves. Endings of these axons reach the perivisceral organ in the next posterior ganglion and pass anteriorly into the median nerve, forming additional varicose endings. We did not detect PLI in the terminal nerve. Thus, our findings raise the possibility that the requirement for an intact VNC in pheromone production reflects a role for descending regulation of neurosecretory cells in the segmental ganglia. Arch. Insect Biochem. Physiol. 34:391–408, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    9.
    Serotonin-like immunoreactivity was mapped in the central nervous system (CNS) of the cockroach, Periplaneta americana. Immunoreactive staining occurred in every ganglion of the CNS. The largest numbers of immunoreactive somata were detected in the optic lobes and the brain, and lowest numbers in the first and second thoracic ganglia. Dense stained fibers, ramifications, and varicosities were found in all ganglia, and numerous axon like processes occurred in all interganglionic connectives. Immunoreactive processes were not, however, detected in most of the peripherally projecting nerve roots. Processes were found only in roots of the suboesophageal ganglion and the tritocerebral lobes of the brain. A comparison of the map for serotonin immunoreactivity with one generated for the pentapeptide transmitter proctolin suggests that the two systems overlap only in the suboesophageal ganglion and the tritocerebrum. The amine and peptide may co-occur in neurons in these regions. The serotonin immunoreactive system appeared significantly different from the octopaminergic system of the ventral nerve cord. Seventy-two potentially identifiable immunoreactive cells were located in the cockroach CNS. Some of these may be suitable for physiological study of the functional role of serotonin.  相似文献   

    10.
    The nervous system of Phocanema decipiens was examined with both the formaldeyhyde-induced and the glyoxylic acid fluorescence histochemical techniques. Green catecholaminergic structures were observed in 4 cephalic papillary nerves, 2 fibres with varicosities in the nerve ring as well as the ventral nerve cord and a pair of lateral nerves.The papillary nerves, extending from the nerve ring to the lips region, have cell bodies which are located anterior or adjacent to the nerve ring. Cell bodies of the lateral nerves are found within the lateral cord tissue posterior to the nerve ring. Each of these neurons has 3 processes—one joins with the nerve ring, the other merges with the ventral nerve cord and the third ends abruptly within the lateral cord.  相似文献   

    11.
    Swimming behavior in the leech Hirudo medicinalis arises from neuronal circuits within the ventral nerve cord. Although the ventral nerve cord comprises a series of homologous segmental ganglia, it remains unresolved whether the swim oscillator circuits within individual ganglia are functionally equivalent. We have extended previous studies on pairs of ganglia to test whether individual ganglia throughout the nerve cord are capable of generating swim oscillations and to measure the cycle periods of local oscillations. We found that the swim-generating function of individual ganglia is broadly distributed, but not uniform. The swim-like oscillations in isolated ganglia from the anterior ganglia nerve cord were less robust than those from mid-cord. Swimming activity in posterior cord ganglia is even weaker we were unable to obtain swim-like oscillations from individual ganglia of the nerve cord posterior to segment 12. Swim-cycle periods exhibited a U-shaped function: those recorded in the most anterior individual ganglia (2.3 s for ganglion M2) and short chains of posterior ganglia (up to 4.0 s) were two to four times longer than those obtained from mid-cord ganglia (near 1.0 s). We conclude that the leech swim system comprises a functionally heterogeneous set of local oscillator units.  相似文献   

    12.
    Summary Production of sex pheromone in several species of moths has been shown to be under the control of a neuropeptide termed pheromone-biosynthesis-activating neuropeptide (PBAN). We have produced an antiserum to PBAN from Helicoverpa zea (Lepidoptera: Noctuidae) and used it to investigate the distribution of immunoreactive peptide in the brain-suboesophageal ganglion complex and its associated neurohemal structures, and the segmental ganglia of the ventral nerve cord. Immunocytochemical methods reveal three clusters of cells along the ventral midline in the suboesophageal ganglion (SOG), one cluster each in the presumptive mandibular (4 cells), maxillary (12–14 cells), and labial neuromeres (4 cells). The proximal neurites of these cells are similar in their dorsal and lateral patterns of projection, indicating a serial homology among the three clusters. Members of the mandibular and maxillary clusters have axons projecting into the maxillary nerve, while two additional pairs of axons from the maxillary cluster project into the ventral nerve cord. Members of the labial cluster project to the retrocerebral complex (corpora cardiaca and cephalic aorta) via the nervus corpus cardiaci III (NCC III). The axons projecting into the ventral nerve cord appear to arborize principally in the dorsolateral region of each segmental ganglion; the terminal abdominal ganglion is distinct in containing an additional ventromedial arborization in the posterior third of the ganglion. Quantification of the extractable immunoreactive peptide in the retrocerebral complex by ELISA indicates that PBAN is gradually depleted during the scotophase, then restored to maximal levels in the photophase. Taken together, our findings provide anatomical evidence for both neurohormonal release of PBAN as well as axonal transport via the ventral nerve cord to release sites within the segmental ganglia.Abbreviations A aorta - Br-SOG brain-suboesophageal ganglion complex - CC corpus cardiacum - PBS phosphate-buffered saline - PLI PBAN-like immunoreactivity - TAG terminal abdominal ganglion - VNC ventral nerve cord  相似文献   

    13.
    The ventral nerve cord in the family Carabidae (considered in the widest sense! exhibits variations in the degree of fusion of thoracic and abdominal ganglia. There are usually three discrete thoracic ganglia and between one and seven discrete abdominal ganglia, the number differing between tribes. Of the 44 tribes and 177 species examined, 38 tribes contained species showing no differences in the degree of ventral nerve cord consolidation. However, the remaining six tribes showed variations in the degree of ventral nerve cord consolidation between genera (Lebiini, Cychrini, Nebriini, Scaritini, Licinini and Brachinini), whilst one genus showed variations between species (Leistus , Nebriini). No variation in ventral nerve cord consolidation was observed in conspecifics. The degree of ventral nerve cord consolidation is inversely proportional to overall body length. With respect to phylogeny, the degree of consolidation of the nerve cord docs not consistently support the traditional Carabinae-Harpalinae subfamily division. However, the Harpalinae always have four or less discrete abdominal ganglia (with the sole exception of the Broscinij, whilst the Carabinae exhibit almost the whole range of variations. Thus the Harpalinae (or the major pari of it) may be a monophyletic group, but this is not true of the Carabinae. Trends in the degree of ventral nerve cord consolidation for the various tribes were noted, and phylogenetic implications were evaluated wherever possible.  相似文献   

    14.
    The ventral nerve cord in the family Carabidae (considered in the widest sense! exhibits variations in the degree of fusion of thoracic and abdominal ganglia. There are usually three discrete thoracic ganglia and between one and seven discrete abdominal ganglia, the number differing between tribes. Of the 44 tribes and 177 species examined, 38 tribes contained species showing no differences in the degree of ventral nerve cord consolidation. However, the remaining six tribes showed variations in the degree of ventral nerve cord consolidation between genera (Lebiini, Cychrini, Nebriini, Scaritini, Licinini and Brachinini), whilst one genus showed variations between species (Leistus, Nebriini). No variation in ventral nerve cord consolidation was observed in conspecifics. The degree of ventral nerve cord consolidation is inversely proportional to overall body length. With respect to phylogeny, the degree of consolidation of the nerve cord docs not consistently support the traditional Carabinae-Harpalinae subfamily division. However, the Harpalinae always have four or less discrete abdominal ganglia (with the sole exception of the Broscinij, whilst the Carabinae exhibit almost the whole range of variations. Thus the Harpalinae (or the major pari of it) may be a monophyletic group, but this is not true of the Carabinae. Trends in the degree of ventral nerve cord consolidation for the various tribes were noted, and phylogenetic implications were evaluated wherever possible.  相似文献   

    15.
    The appearance and development of the GABA-immunoreactive nervous elements in the central nervous system of Eisenia fetida were studied by immunocytochemistry. The nervous system originates from the neuroectoderm situated on the ventral side of the embryo. The organization of the circumpharyngeal ring starts earlier than that of the ventral cord. In the elementary ring the first GABA-immunopositive neurons can be observed (E1 stage) around the mouth. Later the cell number gradually increases and parallel to this process the elementary ring is separeted into a superficial and a deeper portion. The brain and the subesophageal ganglion will be organized from the superficial ring, while the nervous elements of the deeper ring will give rise for the first GABA-immunoreactive elements of the stomatogastric nervous system. In the early stages of the embryogenesis the immunoreactive cells of the developing brain appear solitary, while from the stage E4 they gradually are observed in groups. According to their position, these cell groups are similar to those observed in the brain of the adult earthworms. During embryogenesis the level of the ventral cord ganglia depends on their position in the ectodermal germ bands. It means, that the more organized ganglia are near the circumpharyngeal ring, mean while less developed ganglia are situated caudally from them. By the end of the embryogenesis all ganglia of the ventral cord will be equally well organized. The nerve tracts of the ganglia are built up from contra- and ipsilateral by projected fibres. From E3 stage the medial tracts, mean while from the E4 stage the lateral tracts begin to be formed. During the next stages, more and more fibres connect to the both tracts. At hatching, the development of the central nervous system of Eisenia fetida is not completed, the process is continued during the postembryonic development.  相似文献   

    16.
    Abrusán G 《Oecologia》2003,134(2):278-283
    The responses of invertebrate predators to changes in the morphology of their prey, and especially the responses for induced defences, are largely unexplored, compared with the vast amount of data on predator-induced defences. This study demonstrates that the size of the feeding basket, the anatomical structure used to capture prey by the predaceous freshwater cladoceran Leptodora kindtii, shows significant allometric changes with the average body size of the prey (herbivorous cladocerans) in six lakes of northeastern Poland. Prey density influences the basket size only in adult Leptodora individuals, whereas induced defences such as helmets of Daphniasp. seem to have no effect on Leptodora's morphology. In a feeding experiment it is shown that the increase in the feeding basket enables Leptodora to capture larger prey. The seasonal pattern of morphological change, and its measurable benefit suggest that the observed morphological variability of Leptodora is phenotypic plasticity.  相似文献   

    17.
    Differential interference contrast micrographs from stretched animals, serially sectioned semi-thin and ultrathin sections revealed that the cerebral ganglia (supraoesophageal mass) of the eulardigrade Milnesium tardigradum lie above the buccal tube and adjacent tissue like a saddle. It has an anterior indentation which is penetrated by two muscles that arise from the cuticle of the forehead. The cerebral ganglia consist of lateral outer lobes bearing an eye on each side, and two inner lobes which extend caudally. Between the inner lobes a cone-like projection tapers into a nerve bundle. Each outer lobe is joined with the first ventral ganglion. From the outer lobe near the eye the ganglion for a posterolateral sensory field extends to the epidermis. Anterior to the supraoesophageal mass are three dorsal ganglia for the upper three peribuccal papillae. Two additional ganglia attached to the cerebral mass supply the lateral cephalic papillae. The cerebral ganglia are covered by a thin neural lamella. The pericarya which surround the neuropil have large nuclei. Near the axons in the centre of the supraoesophageal mass the cytoplasm is crowded with vesicles of different size and appearance. Some of them resemble synaptic vesicles while others resemble dense core bodies. Structurally different types of synapses and axons can be distinguished within the neuropil.  相似文献   

    18.
    Summary Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.Abbreviations AG abdominal ganglia - AM alary muscle - AMN alary muscle nerve - CA corpus allatum - CC corpus cardiacum - dPSO distal perisympathetic organ - LHN lateral heart nerve - LT CCAP-immunoreactive lateral tract - NCA nervus corporis allati - NCC nervus corporis cardiaci - NM neuromer - PMN paramedian nerve - PSO perisympathetic organ - SOG subesophageal ganglion - VDM ventral diaphragm muscles - VNC ventral nerve cord  相似文献   

    19.
    ABSTRACT Central nervous system (CNS) of arachnids is still mysterious and has a rich unexplored field compare to what is known in insects or crustaceans. The CNS of the spider, Achaearanea tepidariorum, consists of a dorsal brain or supraesophageal ganglion and circumesophageal connectives joining it to the subesophageal mass. As the segmentation of the arachnid brain is still under discussion, we classify the brain as a protocerebral and tritocerebral ganglion depending on the evidences which generally accepted. The subesophageal nerve mass underneath the brain is the foremost part of the ventral nerve cord. All of this nerve mass is totally fused together, and forming subesophageal ganglia in this spider. In the brain, the nerve cells are packed in the frontal, dorsal and lateral areas, but are not absent from the posterior and ventral regions. In addition, the nerve cells of the subesophageal and abdominal ganglia are only restricted to the ventral and ventolateral regions. The CNS of the spider, Achaearanea tepidariorum is similar in feature to the Family Araneidae.  相似文献   

    20.
    Summary By use of antisera raised against synthetic pigment-dispersing hormone (PDH) of Uca pugilator and FMRFamide, the distribution of immunoreactive structures in the central nervous system (CNS) of Carcinus maenas and Orconectes limosus was studied by light microscopy. In both species, a total of 10–12 PDH-positive perikarya occur amongst the anterior medial, dorsal lateral and angular somata of the cerebral ganglion (CG). In C. maenas, one PDH-perikaryon was found in each commissural ganglion (COG) and several more in the thoracic ganglion. In O. limosus, only four immunopositive perikarya could be demonstrated in the ventral nerve cord, i.e., two somata in the anterior and two in the posterior region of the suboesophageal ganglion (SOG). PDH-immunoreactive tracts and fiber plexuses were present in all central ganglia of both species, and individual axons were observed in the connectives. FMRFamide-immunoreactivity was studied in O. limosus only. Neurons of different morphological types were found throughout the entire CNS, including numerous perikarya in the anterior medial, anterior olfactory, dorsal lateral and posterior cell groups of the CG. Four perikarya were found in the COG, six large and numerous smaller ones in the SOG, and up to eight cells in each of the thoracic and abdominal ganglia. In each ganglion, the perikarya form fiber plexuses. Axons from neurons belonging to the CG could be traced into the ventral nerve cord; nerve fibers arising from perikarya in the SOG appeared to project to the posterior ganglia. In none of the structures examined colocalization of PDH- and FMRF-amide-immunoreactivity was observed.Dedicated to Prof. K.-E. Wohlfarth-Bottermann on the occasion of his 65th birthday  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号