首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Dermaptera (earwigs) is a cosmopolitan order of insects, the phylogenetic relationships of which are poorly understood. The phylogeny of Dermaptera was inferred from large subunit ribosomal (28S), small subunit ribosomal (18S), histone-3 (H3) nuclear DNA sequences, and forty-three morphological characters. Sequence data were collected for thirty-two earwig exemplar taxa representing eight families in two suborders: Hemimeridae (suborder Hemimerina); Pygidicranidae, Anisolabididae, Labiduridae, Apachyidae, Spongiphoridae, Chelisochidae and Forficulidae (suborder Forficulina). Eighteen taxa from ten additional orders were also included, representing Ephemeroptera, Odonata, Orthoptera, Phasmida, Embiidina, Mantodea, Isoptera, Blattaria, Grylloblattodea and Zoraptera. These data were analysed via direct optimization in poy under a range of gap and substitution values to test the sensitivity of the data to variations in parameter values. These results indicate that the epizoic Hemimerus is not sister to the remaining Dermaptera, but rather nested as sister to Forficulidae + Chelisochidae. These analyses support the paraphyly of Pygidicranidae and Spongiphoridae and the monophyly of Chelisochidae, Forficulidae, Anisolabididae and Labiduridae.  相似文献   

2.
In earwigs of the family Anisolabididae, male intromittent organs (virgae) sometimes break off inside female sperm-storage organs (spermathecae) during mating. I examined the effects of this genital breakage on the sperm storage capacity of females using Euborellia plebeja as a representative species. When genital breakage was artificially induced in virgin females, subsequent males successfully inseminated these females. However the sperm-storage capacity of these females was limited by the presence of broken virgae in their spermathecae. In another experiment, genital breakage was experimentally induced in the spermathecae of inseminated females, and their reproductive performance was then monitored for 60 days. In all of four cases where the entire piece of the broken virga remained inside the spermatheca, females deposited fertile eggs (more than 60% hatchability). The average number of clutches, that of eggs laid, and that of hatchlings were similar to those of controls. On the other hand, females laid no eggs in the other two cases where the broken virgae protruded from the spermathecal opening. I discuss the relevance of the results to the mating system and possible removal of rival sperm, which has been reported for E. plebeja. Electronic Publication  相似文献   

3.
The phylogeny of the Forficulina, a suborder of the Dermaptera   总被引:2,自引:0,他引:2  
The phylogeny of the Forficulina (Dermaptera) has been reassessed, examining forty-eight species and thirty characters, of which thirteen characters of the thorax and wings are described or used for phylogenetic purposes for the first time, whereas the remaining seventeen have been extracted from literature. Examination of the thirty characters demonstrates that only twenty-three characters are useful for phylogenetic construction. The characters have been analysed with PAUP 3.1 yielding two equally parsimonious trees. The results suggest an exclusion of the 'Diplatyidae' (themselves paraphyletic) and the Karschiellidae from the Pygidicranidae and support the separation of the Apachyidae from the Labiduridae. A sister-group relationship of Anisolabididae and Spongiphoridae is not supported. The monophyly of the (Spongiphoridae (Forficulidae, Chelisochidae)) is supported.  相似文献   

4.
Kamimura Y 《Journal of morphology》2006,267(11):1381-1389
The number of penises vary in the insect suborder Forficulina (order Dermaptera; earwigs). Males of the families Diplatyidae, Pigidicranidae, Anisolabididae, Apachyidae, and Labiduridae have two penises (right and left), while those of the Spongipohridae, Chelisochidae, and Forficulidae have a single penis. The proposed phylogenetic relationships among these families suggest that the single‐penis families evolved from an ancestor possessing two penises. To date, examinations of double‐penis earwig species have found that only a single penis is used per single copulation. These diversities in structural and behavioral aspects of genitalia raises the following intriguing questions: How are the two penises used? Why did a penis degenerate in several earwig families, and which one was lost? To address these questions, structural and behavioral asymmetries were examined in detail for a representative species Labidura riparia (Labiduridae). Although there was no detectable morphological differentiation between the right and left penises, male L. riparia predominantly used the right one for insemination. This significant “right‐handedness” developed without any experience of mating and was also manifested in the resting postures of the two penises when not engaged in copulation. However, surgical ablation of the right penis did not influence the insemination capacity of males. In wild‐caught males, only about 10% were left‐handed; within this group, abnormalities were frequently observed in the right penis. These lines of evidence indicate that the left penis is merely a spare intromittent organ, which most L. riparia males are likely never to use. Additional observations of five species of single‐penis families revealed that the left penis degenerated in the common ancestor of this group. Considering the proposed sister relationship between the Labiduridae and the single‐penis families, it is possible that such behavioral asymmetries in penis' use, as observed in L. riparia, are parental to the evolutionary degeneration of the infrequently used left penis. J. Morphol., 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

5.
Both sexes of the earwig Euborellia plebeja (Dermaptera: Anisolabididae) mate frequently. The elongated intromittent organs of males are as long as their bodies. Previous studies have revealed that this organ is used to remove rival sperm from the female sperm-storage organ (spermatheca), the length of which is twice that of the female body. The fitness benefit of sperm removal was quantified using two mating experiments with paternity analysis. As expected, given that the sperm-removal organ is shorter than the sperm-storage organ, males gained only about 20% of paternity per single mating with sperm-saturated females. The significance of frequent repeated matings with the same female by males is discussed.  相似文献   

6.
I examined multiple mating and its function in female earwigs, Euborellia plebeja (Dermaptera: Anisolabididae). Like other earwigs, females of this species care for their eggs and intermittently lay eggs in clutches (iteroparity). Analysis of two polymorphic allozyme loci revealed that wild-caught adult females laid clutches with low within-brood genetic relatedness (0.210), indicating that females were promiscuous under natural conditions. Rearing experiments in the laboratory revealed that: (1) repeated mating with a single male increased female fecundity (number of clutches laid) and hence the number of hatchlings produced; (2) estimated sperm number was positively correlated with hatchability; (3) when frequency of mating was controlled, polyandry enhanced hatchability, although this effect was not statistically significant; (4) duration of maternal care varied for clutches with low hatchability, and sometimes exceeded the mean interclutch interval. Thus, although a possible benefit of polyandry is suggested, the greater beneficial effect of repeated mating on female fecundity can explain polyandrous mating in this species. Because female earwigs invest considerable effort in brooding their clutches, it may be adaptive to suppress oviposition unless stored sperm ensures high fertility. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

7.
Females of all species belonging to the family Drosophilidae have two kinds of sperm-storage organs: paired spherical spermathecae and a single elongate tubular seminal receptacle. We examined 113 species belonging to the genus Drosophila and closely allied genera and describe variation in female sperm-storage organ use and morphology. The macroevolutionary pattern of organ dysfunction and morphological divergence suggests that ancestrally both kinds of organs stored sperm. Loss of use of the spermathecae has evolved at least 13 times; evolutionary regain of spermathecal function has rarely if ever occurred. Loss of use of the seminal receptacle has likely occurred only once; in this case, all descendant species possess unusually elaborate spermathecae. Data further indicate that the seminal receptacle is the primary sperm-storage organ in Drosophila. This organ exhibits a pattern of strong correlated evolution with the length of sperm. The evolution of multiple kinds of female sperm-storage organs and the rapidly divergent and correlated evolution of sperm and female reproductive tract morphology are discussed.  相似文献   

8.
We studied the ovary structure and initial stages of oogenesis in 15 representatives of several dermapteran taxa, including the epizoic Arixeniina. In all examined species, the ovaries are meroistic–polytrophic. The ovaries of the basal taxa (‘Pygidicranidae’, ‘Diplatyidae’, and Labiduridae) are composed of elongated ovarioles, attached to short lateral oviducts. In these groups, ovarioles contain several (more than 30) ovarian follicles in a linear arrangement. In the Eudermaptera, the ovaries are composed of 1–6 (Spongiphoridae) or 20–40 (Forficulidae, Chelisochidae) short ovarioles (containing 2 ovarian follicles only) that open to strongly elongated lateral oviducts. In all investigated dermapterans, the ovarian follicles are composed of two germline cells only: an oocyte and a polyploid nurse cell that are covered by a simple follicular epithelium. Our studies indicate that despite a rather unique morphology of the ovarian follicles in the examined species, the processes leading to the formation of the oocyte and nurse cell units are significantly different in basal versus derived taxa.The ovaries of Arixenia esau are composed of 3 short ovarioles attached to a strongly dilated lateral oviduct, ‘the uterus’, containing developing embryos. Histological analysis suggests that the origin of the oocyte and nurse cell units in this species follows the pattern described in eudermapterans.The interpretation of our results in an evolutionary context supports the monophyly of the Dermaptera and Eudermaptera, and the inclusion of the Arixeniina and Hemimerina in the latter taxon.  相似文献   

9.
Sperm storage organs allow females to temporally separate insemination from fertilization, manipulate ejaculates and control fertilization. In the reproductive tract of female fruit flies (Diptera: Tephritidae), sperm are found in two different organs--a pair or triplet of spermathecae, and a "fertilization chamber". In order to understand the specific function of each of these organs, we tested the following hypotheses: (1) Sperm are distributed equally amongst the various sperm storage organs; (2) Both organ types maintain sperm viability; and (3) Sperm used in fertilization come from the fertilization chamber. We counted sperm in spermathecae and fertilization chamber of Mediterranean fruit flies (Ceratitis capitata) every 3 days for 18 days following insemination, and used a live/dead staining technique to determine the viability of sperm in these organs. Finally, by extirpating spermathecae from inseminated females and allowing them to oviposit, we were able to identify the fertilization chamber as the source of fertilizing sperm. Numbers of sperm in the spermathecae declined from an average of 3575 on the day of copulation to 649, 18 days later. Conversely, the fertilization chamber maintained a fairly constant level of sperms, ranging between an average of 207 cells on day 3 to 115 sperms on day 18. Throughout the period we monitored, we found high levels of sperm viability in both organs (> 80%). Sperm viability was similarly high in the fertilization chambers of females without spermathecae. However, fertility of eggs laid by these females declined rapidly, as did the number of sperm in the fertilization chamber. We conclude that both the spermathecae and the fertilization chamber are active sperm storage organs, with separate functions: the spermathecae for long-term storage and the fertilization chamber, periodically filled by the spermathecae, a staging point for fertilizing sperm. We suggest that the use of both organs by females results in sperm economy, which adaptively prolongs the intervals between copulations.  相似文献   

10.
The Dermaptera is an insect order with ca. 2200 described species classified in 11 families. Interestingly, recent morphological and molecular data suggest that at least three dermapteran families (Diplatyidae, Pygidicranidae and Spongiphoridae) are paraphyletic. Here we present results of histological analyses of ovaries and ovarioles in two representatives of Spongiphoridae: Chaetospania borneensis and Irdex chapmani. We show that both the ovaries and ovarioles of studied species are morphologically disparate. The ovaries of C. borneensis consist of shortened ovarioles attached to elongated lateral oviducts and are apparently similar to the ovaries of the Eudermaptera. In contrast, I. chapmani share all the important ovarian characters with more basal taxa, i.e. Anisolabididae and Labiduridae. These findings lend additional support to the paraphyly of Spongiphoridae.  相似文献   

11.
Fishes of the genus Semionotus diversified in the rift lakes of eastern North America during the Mesozoic (Newark Supergroup). Like the well-known cichlid fishes of the African great lakes, diverse complexes of semionotids were apparently endemic to a number of different lakes. Semionotid fishes show considerable morphological diversity in body shape and in a modified row of scales termed “dorsal ridge scales.” A number of distinct dorsal-ridge-scale patterns characterize groups of species from the Newark Supergroup. Interestingly, about 5.5% of individuals examined have anomalous scales mixed in with otherwise stereotypic dorsal-ridge-scale patterns. In this study, I take advantage of nearly annual stratigraphic resolution to determine whether dorsal-ridge-scale anomalies are concentrated stratigraphically in the early phase of lake formation and colonization by semionotids. More than 1,700 specimens of semionotid fish were collected from a single lake deposit (cycle P4), representing approximately 21,000 years, in the Early-Jurassic Towaco Formation of the Newark Basin. Dorsal-ridge-scale anomalies are significantly more frequent in older than in younger lake sediments, which I interpret as being the result of relaxed selection during the early colonization of the lake. Anomalous variation parallels variation in dorsal ridge scales between species-groups. Some anomalies are atavisms, while others are unique or foreshadow future evolutionary events. One type of anomaly is incorporated into the dorsal-ridge-scale series of two new species that gave rise to a radiation in a subsequent lake filling the same topographic basin. Because both novelties and atavisms occur in the dorsal-ridge-scale series of single individuals, I argue that the disruptions of the same “developmental program” produced both atavistic and novel traits.  相似文献   

12.
Flowering plants have modified their floral organs in remarkably diverse ways to optimize their interaction with pollinators. Although floral organs represent a major source of floral diversity, many plants also use extrafloral organs, such as bracts and bracteoles, in interacting with pollinators; however, the evolutionary dynamics of non-floral organs involved in pollination are poorly studied. The genus Macaranga is characterized by protective mutualisms with ants that potentially interfere with pollinators on flowers. Macaranga flowers lack perianths and, notably, bracteoles serve the dual function of rewarding pollinators and protecting them from guarding ants; in one group of species, bracteoles provide a nectar reward to generalist pollinators, while in another group, bracteole “chambers” protect thrips or hemipteran pollinators that use these structures as feeding and breeding sites. We examined the diversity and evolutionary dynamics of inflorescence morphology in Macaranga, focusing on bracteoles. We recognized three inflorescence types based on examination of herbarium materials: Discoid-gland, which possess disc-shaped glands on the bracteole surfaces (including all the generalist-pollinated species); Enclosing, in which bracteoles cover flowers (including all the thrips- and hemipteran-pollinated species); and Inconspicuous, in which bracteoles are small, narrow or absent. Ancestral state reconstruction indicated that inflorescence morphologies have changed multiple times in the genus. These findings suggest that morphological changes in non-floral characters (bracteoles) of Macaranga species have occurred as frequently as in the floral structures of many flowering plants. The multiple evolutions of the Enclosing bracteoles, which protect pollinators, might have been facilitated by pollination interference from mutualistic ants.  相似文献   

13.
The mechanisms driving the coevolution of male and female genital morphologies are still debated. Female genitalia in Drosophila species bear membranous “pouches” or hardened “shields,” which the male genital armature contact during copulation. Although shield‐like structures likely serve to mitigate the effects of harmful mating, some authors have suggested that soft pouches, which do not prevent male genitalia from inflicting wounds, represent a congruent sensory organ. To elucidate the evolutionary forces responsible for the development of such organs, I examined the effects of artificial damage to various genital parts of female Drosophila erecta on reproductive success. Despite a high survival rate among females, damage to the ovipositor plate resulted in frequent failure of insemination and in the embedment of eggs into the substrate. Damage to the vaginal shield resulted in increased mortality and frequent failure of egg embedment, with an egg blocking the vagina under the damaged shield in some females. Wounding of the pouch had less of an effect on both mating and oviposition success, suggesting that the structure “lures” the male trauma‐causing organs to areas where the resultant wounds do not interfere with insemination or oviposition. These data show that the dual functions of female genitalia (mating and oviposition) mediate genital coevolution.  相似文献   

14.
At mating, female insects generally receive and store sperm in specific organs of their reproductive tract called spermathecae. Some Heteroptera, such as Cimicomorpha, lack a true spermatheca; some have receptacles of novel formation where sperm cells can transit or be stored. In Tingidae, there are two sac‐like diverticula, the “pseudospermathecae,” each at the base of a lateral oviduct, which previously were considered to function as spermathecae. However, this role has never been documented, either by ultrastructural studies or by observations of sperm transit in the female reproductive tract. In this article, we investigate the morphology and the ultrastructure of the female reproductive apparatus in the economically important tingid species Stephanitis pyrioides, focusing our attention on the functional role of the pseudospermathecae in an evolutionary perspective. Each ovary consists of seven telotrophic meroistic ovarioles, the long pedicels of which enlarge into a bulb‐like structure near the terminal oocyte. The ovarioles flow into two long lateral oviducts, which join to form a very short common oviduct. Basally, each lateral oviduct is connected through a short duct to one of two pseudospermathecae. The ultrastructure of the ectodermal epithelium of the pseudospermathecae is dramatically different in sexually immature or mated females. In virgin females, cells delimit a very irregular lumen, filled with a moderately electron‐dense granular material. The large nucleus adapts to their irregular shape, which can have long projections in some regions and be flattened in others. After mating, epithelial cells generally elongate and display an apical layer of microvilli extending beneath the cuticle, often containing mitochondria. In the lumen of the pseudospermathecae there is a dense brownish secretion. No sperm cells were ever found inside this organ. After mating, sperm move upward along the lateral oviducts and the ovarioles, accumulating in the bulb‐like structure of the pedicels, and proceeding into the distal region between the follicle cells surrounding the oocyte and the ovariole wall. The egg, most likely fertilized in the bulb‐like region of the ovariole, moves through the lateral oviduct, entirely enters the pseudospermatheca and is smeared with its secretion just before oviposition. We exclude a function of sperm storage for the pseudospermathecae, and instead suggest a novel role for these organs as reproductive accessory glands. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
It has been proposed that multiple sperm storage organs (spermathecae) could allow polyandrous females to control paternity. There is little conclusive evidence for this since insemination of individual spermathecae is generally not experimentally manipulable. Here, we examined sperm use patterns in the Australian redback spider (Latrodectus hasselti), which has paired, independent spermathecae. We assessed paternity when two rivals were forced to inseminate a single storage organ or opposite storage organs. When males inseminated a single spermatheca, mean paternity of the female's first mate was 79.8% (median 89.4%), and 38% of first mates achieved 100% paternity. In contrast, when males inseminated opposite organs, the mean paternity of the first mate was 49.3% (median 49.9%), only 10% of males achieved complete precedence, and paternity was normally distributed, suggesting sperm mixing. Males responded to this difference by avoiding previously inseminated female reproductive tracts. Complete sperm precedence can only be achieved if females permit males to copulate with both reproductive tracts. Females often cannibalize smaller males during their first copulation, thus limiting their paternity to 50%. These data show that multiple sperm storage organs can increase female control of paternity.  相似文献   

16.
Commensal pea crabs inhabiting bivalves have a high reproductive output due to the extension andfecundity of the ovary. We studied the underlying morphology of the female reproductive system in the Pinnotheridae Pinnotheres pisum, Pinnotheres pectunculi and Nepinnotheres pinnotheres using light microscopy and transmission electron microscopy (TEM). Eubrachyura have internal fertilization: the paired vaginas enlarge into storage structures, the spermathecae, which are connected to the ovaries by oviducts. Sperm is stored inside the spermathecae until the oocytes are mature. The oocytes are transported by oviducts into the spermathecae where fertilization takes place. In the investigated pinnotherids, the vagina is of the “concave pattern” (sensu Hartnoll 1968 ): musculature is attached alongside flexible parts of the vagina wall that controls the dimension of its lumen. The genital opening is closed by a muscular mobile operculum. The spermatheca can be divided into two distinct regions by function and morphology. The ventral part includes the connection with vagina and oviduct and is regarded as the zone where fertilization takes place. It is lined with cuticle except where the oviduct enters the spermatheca by the “holocrine transfer tissue.” At ovulation, the oocytes have to pass through this multilayered glandular epithelium performing holocrine secretion. The dorsal part of the spermatheca is considered as the main sperm storage area. It is lined by a highly secretory apocrine glandular epithelium. Thus, two different forms of secretion occur in the spermathecae of pinnotherids. The definite role of secretion in sperm storage and fertilization is not yet resolved, but it is notable that structure and function of spermathecal secretion are more complex in pinnotherids, and probably more efficient, than in other brachyuran crabs. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
Mantophasmatodea and phylogeny of the lower neopterous insects   总被引:6,自引:0,他引:6  
Polyneoptera is a name sometimes applied to an assemblage of 11 insect orders comprising the lower neopterous or “orthopteroid” insects. These orders include familiar insects such as Orthoptera (grasshoppers), Blattodea (roaches), Isoptera (termites) (Mantodea) praying mantises, Dermaptera (earwigs), Phasmatodea (stick insects), Plecoptera (stoneflies), as well as the more obscure, Embiidina (web‐spinners), Zoraptera (angel insects) and Grylloblattodea (ice‐crawlers). Many of these insect orders exhibit a high degree of morphological specialization, a condition that has led to multiple phylogenetic hypotheses and little consensus among investigators. We present a phylogenetic analysis of the polyneopteran orders representing a broad range of their phylogenetic diversity and including the recently described Mantophasmatodea. These analyses are based on complete 18S rDNA, 28S rDNA, Histone 3 DNA sequences, and a previously published morphology matrix coded at the ordinal level. Extensive analyses utilizing different alignment methodologies and parameter values across a majority of possible ranges were employed to test for sensitivity of the results to ribosomal alignment and to explore patterns across the theoretical alignment landscape. Multiple methodologies support the paraphyly of Polyneoptera, the monophyly of Dictyoptera, Orthopteroidea (sensu Kukalova‐Peck; i.e. Orthoptera + Phasmatodea + Embiidina), and a group composed of Plecoptera + Dermaptera + Zoraptera. Sister taxon relationships between Embiidina + Phasmatodea in a group called “Eukinolabia”, and Dermaptera + Zoraptera (“Haplocercata”) are also supported by multiple analyses. This analysis also supports a sister taxon relationship between the newly described Mantophasmatodea, which are endemic to arid portions of southern Africa, and Grylloblattodea, a small order of cryophilic insects confined to the north‐western Americas and north‐eastern Asia, in a group termed “Xenonomia”. This placement, coupled with the morphological disparity of the two groups, validates the ordinal status of Mantophasmatodea. © The Willi Hennig Society 2005.  相似文献   

19.
The functional morphology of the genital appendages, horn organs and modified prosomal limb III of the Silurian eurypterid, Baltoeurypterus tetragonophthalmus (Fischer, 1839) (Chelieerata: Eurypterida) is investigated. The longer type A genital appendage, interpreted as a female structure, is associated with a pair of horn organs, regarded as spermathecae. The shorter type B appendage, interpreted as male, is associated with scimitar lobes on prosomal limb III, regarded as clasping structures. A mechanism is proposed by which the type A appendage was lowered through flexure of the genital operculum acting along sutures in the cuticle. A model of mating is suggested, involving the male depositing an unstalked spermatophorc on the substrate and the female retrieving it for storage in the spermathecae. This model is more arachnid-like than mating in Limutus (an extant aquatic chclicerate), and suggests that sperm transfer using spcrmatophores and storage of sperm in spermathecae, allowed the timing of egg production in curyptcrids to be controlled.  相似文献   

20.
Temperature mediates trophic interactions, including relationships between insect pests and predators, and functional response studies are often used to determine the suitability of predators as biocontrol agents. We investigated the effects of temperature on the functional response of Euborellia annulipes (Lucas) (Dermaptera: Anisolabididae) preying on Plutella xylostella (L.) (Lepidoptera: Plutellidae) larvae. Predation rate, type of functional response, attack rate (a'), handling time (Th), and maximum predation rate (T/Th) of the predator were estimated using seven prey densities and three thermal conditions. The functional response of E. annulipes to P. xylostella was temperature-dependent, type III under the lower temperatur (18°C and 25 °C) , and type II at 32 °C. We observed increasing values of a’ in 25 °C and 32 °C, decreasing values of Th and highest T/Th as the thermal condition increased. Our findings suggest that E. annulipes could be effective to control P. xylostella under different thermal conditions, however its predation behavior changes according to temperature variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号