首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During oviposition, the parasitic wasp Diachasmimorpha longicaudata introduces an entomopoxvirus (DlEPV) and a rhabdovirus (DlRhV) into larvae of its tephritid fruit fly host Anastrepha suspensa. DlEPV and DlRhV replicate, respectively, in host hemocytes and epidermal cells. Both viruses, like many beneficial viruses of parasitic wasps, are retained in all wasp generations but their avenue(s) of transmission are unknown. This study tests the hypothesis that DlRhV is transmitted transovarially or through larval feeding on infected host hemolymph. Transmission electron microscopy (TEM) revealed no virions in pre-vitellogenic or vitellogenic ova, or in the lateral oviduct of D. longicaudata females. However, numerous virions occurred in subchorionic regions of 33-36-h-old oviposited eggs. This suggests that DlRhV is introduced into the egg either as (a) intact virions after chorionogenesis but prior to oviposition and/or as (b) unencapsidated RNA molecules, undetectable by TEM in pre-vitellogenic ova, that subsequently replicate and assemble into mature virions. DlRhV particles also occurred in the midgut lumen of 20-24-h-old wasp first instars, suggesting that they were ingested. These virions may have been released from the egg into the hemolymph during hatching or may have come from virions introduced by the female wasp directly into the host, separate from the egg. DlRhV particles were also evident in the intracellular vesicles and intercellular spaces of the larval midgut. Taken together, these data support the hypothesis that DlRhV is transovarially transmitted as virions and/or as unencapsidated RNA. Further studies are needed to determine whether the DlRhV that ultimately resides within the female wasp's accessory gland filaments is the progeny of the virus from the egg and/or larval midgut cells.  相似文献   

2.
Summary The female accessory glands include the tubular poison gland, the paired, lemon-shaped uterus glands, and Dufour's gland, an unbranched tubular organ. They consist essentially of a single layer of epithelium cells surrounded by a basement membrane. The lumen is lined by cuticle. The proteinaceous secretion of the poison gland is released into intracellular ducts provided with microvilli, each connected to a channel lined with cuticle which leads to the central lumen of the gland. The channel is formed by special canal cells. Nerve endings are interspersed among the gland cells. The uterus gland consists of four cell types derived from a single type of precursor cell found in newly hatched wasps. Type I cells are covered by type II cells and are thus without contact to the luminal surface of the gland. They contain stacks or whorls of mitochondria and smooth cisternae in an alternating arrangement. Vesicles with a secretory product are found in cells of types II and III. Deep anastomosing infoldings of the plasmalemma, stabilized by microtubules and dense material at the branchings, are characteristic for type II cells. Most secretory vesicles are found in type III cells, the prevalent cell type which is thought to be the source of the lipoprotein secretion. Coated vesicles are present at deep infoldings of the plasmalemma. The greatly enlarged apical surface area of type IV cells and the presence of mitochondria in slender outgrowths is suggestive of an osmoregulatory function. In Dufour's gland, two cell types appear in succession, the first with a very dense cytoplasm, the second with dense inclusions and many seemingly empty vesicles of smooth endoplasmic reticulum. The secretion products, lecithin and a cholesterol ester, are thought to be formed by the second cell type. The dense inclusion might be lecithin, which reacts with osmium tetroxide. The cholesterol ester could have been washed out of the empty vesicles by the embedding procedure.  相似文献   

3.
The fine structure of the esophagus, including procorpus, metacorpus, isthmus, gland lobe, and esophago-intestinal junction, is examined in males of Sarisodera hydrophila. A cuticle-lined lumen extends most of the length of the esophagus, broadens to form a pump chamber in the metacorpus, and posteriorly is continuous with junctional complexes among four esophago-intestinal cells. These four cells are partially enveloped by the gland lobe which basically consists of three gland cells, one dorsal and two subventral. Each gland cell has an anterior process which opens into the lumen of the esophagus through a cuticle-lined duct. The dorsal gland joins the lumen in the anterior portion of the procorpus, whereas ducts of the subventral glands terminate at the base of the metacorpus pump chamber. The subventral glands are predominant in the posterior portion of the gland lobe and are partially ensheathed by a narrow portion of the dorsal gland which extends to within 5 μm of the posterior terminus of the gland lobe. Contents of the dorsal gland include primarily electron dense granules, although rough endoplasmic reticulum (RER) is predominant posteriorly. Secretory granules within the subventral glands vary in morphology and are evenly distributed throughout the two ceils among other organelles, including RER and a large Golgi apparatus. Innervation of the esophagus includes nerve processes which originate from several perikaryons (cell bodies) located in the anterior portion of the gland lobe. The esophagus of males of S. hydrophila is compared with that of other Heteroderoidea, Heterodera glycines and Meloidogyne incognita.  相似文献   

4.
Females of the parasitoid digger wasp species Liris niger hunt crickets as food for their future brood. The wasps paralyse the prey by injecting their venom directly into the CNS. The venom is produced in a gland consisting of two ramified glandular tubules terminating in a common reservoir. The reservoir contents enter the sting bulb via a ductus venatus. Secretory units of dermal gland type III line the two free gland tubules, the afferent ducts to the reservoir and the cap region within the reservoir. Secretion products of tubules reach the reservoir through the cuticle-lined central funnel. Secretory cells in the distal and middle parts of the tubules contain extensive rough endoplasmic reticulum and numerous electron-dense vesicles, whereas secretory cells of the afferent ducts and the cap region of the reservoir lack electron-dense vesicles and the endoplasmic reticulum is poorly developed. The secretory apparatus undergoes age-related changes. The secretory units in the venom gland tubules and inside the reservoir complete differentiation 1 day after imaginal ecdysis. After 30 days, massive autolytic processes occur in the secretory cells and in the epithelial cells of the reservoir. Analysis of the polypeptide composition demonstrates that the venom reservoir contains numerous proteins ranging from 3.4 to 200 kDa. A dominant component is a glycoprotein of about 90 kDa. In contrast the polypeptide composition of Dufour's gland is completely different and contains no glycoproteins. Comparison of the venom reservoir contents with the polypeptide pattern of venom droplets reveals that all of the major proteinaceous constituents become secreted. Thus the secreted venom contains exclusively proteins present in the soluble contents of the venom gland.  相似文献   

5.
The Diachasmimorpha longicaudata entomopoxvirus (DlEPV), the first reported symbiotic entomopoxvirus, occurs in the venom apparatus of D. longicaudata female wasps and is introduced into Anastrepha suspensa larvae during parasitism. The DlEPV 250-300 kb double stranded DNA genome encodes putative proteins having 30 to >60% amino acid identity with poxvirus homologs such as DNA helicase, DNA-dependent RNA polymerase, and the poxvirus-specific rifampicin resistance protein. Although the molecular characterization of DlEPV is progressing, little is known about its morphogenesis in and effects on host haemocytes. This paper describes (1) haemocytes of third instar A. suspensa, (2) DlEPV infection and morphogenesis, and (3) DlEPV-induced changes in haemocytes. A. suspensa third instars have 3-4 haemocyte morphotypes. Dot blots of DNA from infected haemocytes hybridized with a digoxigenin-labeled DlEPV genomic probe as early as 4 h post-parasitism (hpp) and the intensity of the signal increased with time through 40 hpp. Immunofluorescence microscopy localized DlEPV proteins in cytoplasmic (but not nuclear) sites of infected haemocytes, within 24-36 hpp. Electron microscopy confirmed the presence of viral envelopes, immature spheroids with centric nucleoids, budding virus, and extracellular enveloped virus in three haemocyte types, 24-84 hpp and later. Infected haemocytes exhibited blebbing, DNA concatenation, and inability to encapsulate sephadex beads in vitro. These data indicate that DlEPV disrupts the normal function of host haemocytes, thereby insuring the successful development of D. longicaudata offspring and as such should be regarded as a symbiont of the wasp.  相似文献   

6.
M. Whitear    G. Zaccone  S. Fasulo    A. Licata 《Journal of Zoology》1991,224(4):669-676
The axillary glands of Ictalurus are lobulated invaginations of the epidermis, opening at a pore between the pectoral spine and the cleithrum. Holocrine cells lining a false lumen form a viscous secretion. The secretory cells originate in the tenuous basal layer of the gland wall. Secretion is initiated by the formation of compound vesicles in cells that become very large and have complex cytoplasm of a varied appearance. Golgi systems are well developed and the perinuclear cytoplasm may contain many mitochondria and sacs of ribosomal endoplasmic reticulum; some tracts of cytoplasm are vesicular and contain free ribosomes. Some cells contain numerous large lysosomes, and some have extensive contents of fibrillar masses imperfectly separated by membranes, that recall the appearance of the mucous secretion of goblet cells. The secretory cells break down, releasing the degenerating organelles, including the nuclei, into the false lumen. Some structures are still recognizable in the secretion even after it has been expelled, but the main part of the formed secretion consists of the mucus-like masses. Various leucocytes are found in the gland walls and embedded in the secretion. The fine structure differentiates the holocrine cells of the axillary gland from the club cells of the epidermis, and from the venom glands associated with the fin spines of catfishes. The function of the axillary gland secretion remains unknown.  相似文献   

7.
Changes in the ultrastructure of epithelial cells from long hyaline glands of male Melanoplus sanguinipes (Fabr.) (Orthoptera : Acrididae) have been examined during sexual maturation and after allatectomy. In newly emerged males, the long hyaline gland epithelium is composed of 1–3 cell layers. The cells contain almost no rough endoplasmic reticulum, inconspicuous Golgi complexes, and large numbers of free ribosomes and polysomes. Within 24 hr, the cells undergo considerable reorganization to form a 1-cell-thick layer. Changes in cytostructure include proliferation of the rough endoplasmic reticulum and the development of several elaborate Golgi complexes. The developing lumen contains a coarse fibrous material. By 3 days postemergence, columnar epithelial cells are clearly capable of considerable synthesis and export of secretory protein. Rough endoplasmic reticulum, and large, elaborate Golgi complexes are the major structural features of the cytoplasm. From day 3 to sexual maturity (day 7), no major ultrastructural changes occur, although massive accumulation of secretion in the lumen causes the epithelium to become cuboidal or flattened. Isoelectric focusing of soluble proteins from long hyaline gland secretions shows that maturing glands contain increasing numbers and quantities of secretory proteins.Allatectomy has minor effects on long hyaline gland ultrastructure. A reduction in the density of rough endoplasmic reticulum and ribosomes suggests that glands from operated males are metabolically less active. This is confirmed by qualitative and quantitative changes in the amount of secretion as revealed by isoelectric focusing. The observations are discussed in terms of the juvenile hormone control of long hyaline gland maturation.  相似文献   

8.
Females of a solitary digger wasp, the European beewolf (Philanthus triangulum F.), cultivate symbiotic bacteria of the genus Streptomyces in specialized antennal glands. The streptomycetes are secreted in the subterranean brood cells and protect the offspring against mould fungi. We reconstructed the complex morphology of the antennal glands using 3D-visualization software, investigated the ultrastructure of the glands, and examine the role of the antennal glands as organs for the cultivation of the symbiotic bacteria. The bacteria are cultivated in five antennomeres within large reservoirs that consist of two slightly bent lobes. Each gland reservoir is bordered by a monolayered epithelium lined with a partially reinforced cuticle and when completely filled with bacteria it comprises about half of the antennomere's volume. The opening of the reservoir is covered by gelatinous appendage of the cuticle. The cells of the monolayered epithelium bordering each reservoir show basal invaginations, apical microvilli and numerous vesicles. Each reservoir is surrounded by approximately 400 class 3 gland units that are connected to the reservoir lumen through conducting canals. The class 3 gland cells contain numerous vesicles and a high density of rough endoplasmatic reticulum. In the reservoir lumen, large numbers of symbiotic Streptomyces bacteria are embedded in secretion droplets. Thus, the bacteria are apparently provided with large amounts of nutrients via the gland epithelium and the class 3 gland cell units.  相似文献   

9.
The digger wasp species Ampulex compressa produces its venom in two branched gland tubules. They terminate in a short common duct, which is bifurcated at its proximal end. One leg is linked with the venom reservoir, the other one extends to the ductus venatus. Each venom gland tubule possesses, over its entire length, a cuticle-lined central duct. Around this duct densely packed class 3 gland units each composed of a secretory cell and a canal cell are arranged. The position of their nuclei was demonstrated by DAPI staining. The brush border of the secretory cells surrounds the coiled end-apparatus. Venom is stored in a bladder like reservoir, which is surrounded by a thin reticulated layer of muscle fibres. The reservoir as a whole is lined with class 3 gland units. The tubiform Dufour's gland has a length of about 350 μm (∅ 125 μm) only and is surrounded by a network of pronounced striated muscle fibres. The glandular epithelium is mono-layered belonging to the class 1 type of insect epidermal glands. The gland cells are characterized by conspicuous lipid vesicles. Secretion of material via the gland cuticle into the gland lumen is apparent. Analysis of the polypeptide composition demonstrated that the free gland tubules and the venom reservoir contain numerous proteins ranging from 3.4 to 200 kDa. The polypeptide composition of the Dufour's gland is completely different and contains no lectin-binding glycoproteins, whereas a dominant component of the venom droplets is a glycoprotein of about 80 kDa. Comparison of the venom reservoir contents with the polypeptide pattern of venom droplets revealed that all of the major proteinaceous constituents are secreted. The secreted venom contains exclusively proteins present in the soluble contents of the venom gland. The most abundant compound class in the Dufour's gland consisted of n-alkanes followed by monomethyl-branched alkanes and alkadienes. Heptacosane was the most abundant n-alkane. Furthermore, a single volatile compound, 2-methylpentan-3-one, was identified in various concentrations in the lipid extract of the Dufour's gland.  相似文献   

10.
Nematode amphids are a pair of lateral cephalic sense organs, each comprising a group of sensory endings terminating in a cuticle-lined pit. In Syngamus trachea, a parasite of birds, each amphid is surrounded by two non-nervous supporting elements, a large gland cell basally and a smaller supporting cell anteriorly. The amphidial glands display high levels of secretory activity from five to six days postinfection. Secretory material is discharged through the lumen of the sense organ onto host tissue. The ultrastructure of amphids and amphidial glands has been investigated in newly moulted, immature and mature adults to trace the development of glandular activity and its effect on amphid-amphidial gland relationships. In newly moulted adults, the glands have very low levels of secretory activity and appear to act only as supporting cells to the amphids. As secretory activity increases, the gland cell membrane surrounding the sensory endings is elaborated into a reticulum which probably forms the secretory surface. In mature adults the amphid pit is swollen and filled with secretion; the sensory endings are relegated to the periphery of the lumen. It is suggested that amphidial glands develop from typical supporting cells, but acquire a new role possibly associated with parasite attachment.  相似文献   

11.
The morphology and the ultrastructure of the male accessory glands and ejaculatory duct of Ceratitis capitata were investigated. There are two types of glands in the reproductive apparatus. The first is a pair of long, mesoderm-derived tubules with binucleate, microvillate secretory cells, which contain smooth endoplasmic reticulum and, in the sexually mature males, enlarged polymorphic mitochondria. The narrow lumen of the gland is filled with dense or sometimes granulated secretion, containing lipids. The second type consists of short ectoderm-derived glands, finger-like or claviform shaped. Despite the different shape of these glands, after a cycle of maturation, their epithelial cells share a large subcuticular cavity filled with electron-transparent secretion. The ejaculatory duct, lined by cuticle, has epithelial cells with a limited involvement in secretory activity. Electrophoretic analysis of accessory gland secretion reveals different protein profiles for long tubular and short glands with bands of 16 and 10 kDa in both types of glands. We demonstrate that a large amount of accessory gland secretion is depleted from the glands after 30 min of copulation.  相似文献   

12.
《Autophagy》2013,9(2):298-313
The epithelial derived Harderian gland consists of 2 types of secretory cells. The more numerous type A cells are responsible for the secretion of lipid droplets, while type B cells produce dark granules of multilamellar bodies. The process of autophagy is constitutively active in the Harderian gland, as confirmed by our analysis of LC3 processing in GFP-LC3 transgenic mice. This process is compromised by epithelial deletion of Atg7. Morphologically, the Atg7 mutant glands are hypotrophic and degenerated, with highly vacuolated cells and pyknotic nuclei. The mutant glands accumulate lipid droplets coated with PLIN2 (perilipin 2) and contain deposits of cholesterol, ubiquitinated proteins, SQSTM1/p62 (sequestosome 1) positive aggregates and other metabolic products such as porphyrin. Immunofluorescence stainings show that distinct cells strongly aggregate both proteins and lipids. Electron microscopy of the Harderian glands reveals that its organized structure is compromised, and the presence of large intracellular lipid droplets and heterologous aggregates. We attribute the occurrence of large vacuoles to a malfunction in the formation of multilamellar bodies found in the less abundant type B Harderian gland cells. This defect causes the formation of large tertiary lysosomes of heterologous content and is accompanied by the generation of tight lamellar stacks of endoplasmic reticulum in a pseudo-crystalline form. To test the hypothesis that lipid and protein accumulation is the cause for the degeneration in autophagy-deficient Harderian glands, epithelial cells were treated with a combination of the proteasome inhibitor and free fatty acids, to induce aggregation of misfolded proteins and lipid accumulation, respectively. The results show that lipid accumulation indeed enhanced the toxicity of misfolded proteins and that this was even more pronounced in autophagy-deficient cells. Thus, we conclude autophagy controls protein and lipid catabolism and anabolism to facilitate bulk production of secretory vesicles of the Harderian gland.  相似文献   

13.
The epithelial derived Harderian gland consists of 2 types of secretory cells. The more numerous type A cells are responsible for the secretion of lipid droplets, while type B cells produce dark granules of multilamellar bodies. The process of autophagy is constitutively active in the Harderian gland, as confirmed by our analysis of LC3 processing in GFP-LC3 transgenic mice. This process is compromised by epithelial deletion of Atg7. Morphologically, the Atg7 mutant glands are hypotrophic and degenerated, with highly vacuolated cells and pyknotic nuclei. The mutant glands accumulate lipid droplets coated with PLIN2 (perilipin 2) and contain deposits of cholesterol, ubiquitinated proteins, SQSTM1/p62 (sequestosome 1) positive aggregates and other metabolic products such as porphyrin. Immunofluorescence stainings show that distinct cells strongly aggregate both proteins and lipids. Electron microscopy of the Harderian glands reveals that its organized structure is compromised, and the presence of large intracellular lipid droplets and heterologous aggregates. We attribute the occurrence of large vacuoles to a malfunction in the formation of multilamellar bodies found in the less abundant type B Harderian gland cells. This defect causes the formation of large tertiary lysosomes of heterologous content and is accompanied by the generation of tight lamellar stacks of endoplasmic reticulum in a pseudo-crystalline form. To test the hypothesis that lipid and protein accumulation is the cause for the degeneration in autophagy-deficient Harderian glands, epithelial cells were treated with a combination of the proteasome inhibitor and free fatty acids, to induce aggregation of misfolded proteins and lipid accumulation, respectively. The results show that lipid accumulation indeed enhanced the toxicity of misfolded proteins and that this was even more pronounced in autophagy-deficient cells. Thus, we conclude autophagy controls protein and lipid catabolism and anabolism to facilitate bulk production of secretory vesicles of the Harderian gland.  相似文献   

14.
Drosophila melanogaster salivary glands produce a mucoprotein-containing saliva in the third larval instar. At the time of prepupa formation, the protein component of the saliva is more than 30% of the total gland protein. Electrophoresis of reduced and alkylated saliva proteins in acrylamide gels yields four saliva-specific fractions. Two protein fractions contain strongly linked sugar. The molecular weights of the proteins were ascertained in SDS-acrylamide gels. Molecular weights for two sugar-free fractions were found to be 12 × 103 and 23 × 103 and, for one fraction containing little sugar, it probably lies below 100 × 103. The variability of saliva proteins in 67 wild types of D. melanogaster were investigated. With the help of transplantation experiments, it was shown that the salivary glands synthesize saliva autonomously. Saliva proteins could be electrophoretically demonstrated earliest in the salivary glands of 86- to 88-hr-old larvae. After saliva is discharged from the gland lumen at the beginning of prepupa formation, the glands produce another type of saliva during the entire prepupal stage and also secrete it into the gland lumen. The chromosome puffs in section 3C of the X chromosome and in section 68C in the third chromosome show a behavior that is positively correlated with larval saliva synthesis.  相似文献   

15.
ABSTRACT The poison gland of minor workers of P.pallidula. Nyl. contains 3-ethyl-2,5-dimethylpyrazine which induces trail-following in other workers, but does not account for the full trail-following effect of one worker's poison gland. No pyrazines were detected in major workers and their glands do not contain the pheromone.  相似文献   

16.
The fine structure of the seminal vesicle and reproductive accessory glands was investigated in Bittacidae of Mecoptera using light and transmission electron microscopy. The male reproductive system of Bittacidae mainly consists of a pair of testes, a pair of vasa deferentia, and an ejaculatory sac. The vas deferens is greatly expanded for its middle and medio-posterior parts to form a well-developed seminal vesicle. The seminal vesicle is composed of layers of developed muscles and a mono-layered epithelium surrounding the small central lumen. The epithelium is rich in rough endoplasmic reticulum and mitochondria, and secretes vesicles and granules into the central lumen by merocrine mechanisms. A pair of elongate mesodermal accessory glands opens into the lateral side of the seminal vesicles. The accessory glands are similar to the seminal vesicle in structure, also consisting of layers of muscle fibres and a mono-layered elongated epithelium, the cells of which contain numerous cisterns of rough endoplasmic reticulum and mitochondria, and a few Golgi complexes. The epithelial cells of accessory glands extrude secretions via apocrine and merocrine processes. The seminal vesicles mainly serve the function of secretion rather than temporarily storing spermatozoa. The sperm instead are temporarily stored in the epididymis, the greatly coiled distal portion of the vas deferens.  相似文献   

17.
alpha 2u-Globulin, the principal urinary protein of the male rat, has extensive sequence homology with many lipid binding proteins. The highest concentration of alpha 2u-globulin is found in the preputial gland, a holocrine secretory organ with pheromonal function. Meibomian and perianal glands are two other modified sebaceous glands with holocrine secretory cycles and pleiomorphic peroxisomes capable of synthesizing pheromonal lipids. Immunocytochemical examination shows the presence of alpha 2u-globulin in the acinar cells of all three of these modified sebaceous glands. Whereas in the preputial gland all of the acinar cells exhibit immunoreactivity, in the meibomian and perianal glands only selective cells contain alpha 2u-globulin. In the case of the preputial gland, in addition to the acinar cells some stratified epithelial cells also were immunoreactive. In the perianal and meibomian glands, keratinocytes lining nearby hair shafts and select cells of accessory oil glands stained for alpha 2u-globulin. In situ hybridization with a cloned cRNA probe confirmed the immunocytochemical data. Presence of the alpha 2u-globulin mRNA in these glands was also established by Northern blot analysis. Immunoelectron microscopic examination of preputial alpha 2u-globulin showed the presence of this protein in secretory granules of various maturational stages. Immunolabeled alpha 2u was also found in attached vesicles containing protein and lipid inclusions. The lytic cells were not only loaded with alpha 2u-globulin but also contained sharp-edged, irregularly shaped electron-dense granules which stained heavily for this protein. Specific localization of alpha 2u-globulin and its mRNA in three pheromone-producing sebaceous glands and its structural homology with known lipid binding proteins indicate a pheromone carrier role of alpha 2u-globulin.  相似文献   

18.
The hamster nasal cavity consists of vestibular, non-olfactory and olfactory portions. Much of the non-olfactory nasal cavity surface is lined by cuboidal, stratified cuboidal, and low columnar epithelia, devoid of cilia. Goblet cells and ciliated respiratory epithelium are present over only a small portion of the nasal cavity surface. The largest glandular masses in the hamster nose are the maxillary recess glands, the vomeronasal glands and the lateral nasal gland 1; these three glands contain neutral mucopolysaccharides (PAS-positive). Other nasal glands contain both acidic and neutral mucopolysaccharides; the staining reaction for acidic mucopolysaccharide is stronger in goblet cells and olfactory glands than in the other nasal glands. The ducts which open into the nasal vestibule are the excretory ducts of compound tubuloacinar serous glands. The one major PAS-positive gland whose duct opens into the nasal vestibule is the lateral nasal gland 1. The ducts of the compound tubuloacinar vomeronasal glands open into the lumen of the vomeronasal organ, which is connected to the ventral nasal meatus by means of the vomeronasal duct. The ducts of the branched tubuloacinar maxillary recess glands open into the maxillary recess. Few ducts open into the caudal half of the nasal cavity.  相似文献   

19.
The murine PSP gene is expressed at a high-level in the parotid glands. To extend the knowledge of parotid gland expression and develop tools for expression of heterologous proteins in this tissue, the regulation of the PSP gene was studied using transgenic mice. High-level parotid gland expression of the PSP gene was indicated to depend on a novel regulatory region situated between –8.0 and –6.5 kb. Together with previous results this indicates that the main regulatory elements in the PSP gene are situated between –8.0 to –3.1 kb. This region was shown to activate a heterologous SV40 early promoter in the parotid glands of transgenic mice, suggesting that the PSP gene is controlled by enhancer sequences. A novel Psp derived 9.7 kb parotid gland expression cassette, Lama IV, carrying all known regulatory regions in the PSP gene was expressed at high-levels in the parotid glands and should prove highly useful for expression of heterologous proteins in the saliva of transgenic mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号