首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central complex is a major neuropilar structure in the insect brain whose distinctive, modular, neuroarchitecture in the grasshopper is exemplified by a bilateral set of four fibre bundles called the w, x, y and z tracts. These columns represent the stereotypic projection of axons from the pars intercerebralis into commissures of the central complex. Each column is established separately during early embryogenesis in a clonal manner by the progeny of a subset of four identified protocerebral neuroblasts. We report here that dye injected into identified pioneers of the primary brain commissure between 31 and 37% of embryogenesis couples to cells in the pars intercerebralis which we identify as progeny of the W, X, Y, or Z neuroblasts. These progeny are the oldest within each lineage, and also putatively the first to project an axon into the protocerebral commissure. The axons of pioneers from each tract do not fasciculate with one other prior to entry into the commissure, thereby prefiguring the modular w, x, y, z columns of the adult central complex. Within the commissure, pioneer axons from columnar tracts fasciculate with the growth cones of identified pioneers of the existing primary fascicle and do not pioneer a separate fascicle. The results suggest that neurons pioneering a columnar neuroarchitecture within the embryonic central complex utilize the existing primary commissural scaffold to navigate the brain midline.  相似文献   

2.
The primary axon scaffold of the insect brain is established early in embryogenesis and comprises a preoral protocerebral commissure, a postoral tritocerebral commissure and longitudinal fiber pathways linking the two. In both grasshopper and fly its form is approximately orthogonal and is centered around the stomodeum. We show how pioneer fibers from the protocerebrum and tritocerebrum cross the brain midline directly via their respective commissures. The deutocerebrum, however, lacks its own commissure and we describe how deutocerebral pioneers circumnavigate the gut to cross the midline either via the protocerebral commissure or the tritocerebral commissure. In contrast to all other commissures of the central nervous system, the protocerebral commissure persists, albeit in reduced form, in the commissureless mutation in the fly. Besides the com gene, a further, as yet unidentified, mechanism must regulate this commissure. The formation of the tritocerebral commissure involves labial, a member of the Hox gene group. Genetic rescue experiments in labial mutants reveal that the formation of this commissure can be rescued by all other Hox genes except Abdominal-B. However, only in the labial and Deformed null mutants are the commissures associated with the respective expression domains (tritocerebral, mandibular, respectively) absent. This suggests that the molecular mechanisms regulating postoral brain commissure formation are distinct from those in the neuromeres of the ventral nerve cord.  相似文献   

3.
The commissures represent a major neuroarchitectural feature of the central nervous system of insects and vertebrates alike. The adult brain of the grasshopper comprises 72 such commissures, the first of which is established in the protocerebral midbrain by three sets of pioneer cells at around 30% of embryogenesis. These pioneers have been individually identified via cellular, molecular and intracellular dye injection techniques. Their ontogenies, however, remain unclear. The progenitor cells of the protocerebral midbrain are shown via Annulin immunocytochemistry to be compartmentalized, belonging either to the protocerebral hemispheres or the so-called median domain. Serial reconstructions based on bromodeoxyuridine incorporation confirm that their lineages do not intermingle. Dye injection into progenitor cells and progeny confirms this compartmentalization, and reveals that none of the pioneers are associated with a lineage of cells deriving from a protocerebral neuroblast or midline precursor. Immunocytochemical data as well as dye injection into identified pioneers over several developmental stages indicate that they differentiate directly from epithelial cells, but not from classical progenitor cells. That the commissural pioneers of the protocerebrum represent modified epithelial cells involves a different ontogeny to that described for pioneers in the ventral nerve cord, but parallels that of pioneer neurons of the peripheral nervous system.  相似文献   

4.
Mammalian p62/sequestosome-1 protein binds to both LC3, the mammalian homologue of yeast Atg8, and polyubiquitinated cargo proteins destined to undergo autophagy-mediated degradation. We previously identified a cargo receptor-binding domain in Atg8 that is essential for its interaction with the cargo receptor Atg19 in selective autophagic processes in yeast. We, thus, sought to determine whether this interaction is evolutionally conserved from yeast to mammals. Using an amino acid replacement approach, we demonstrate that cells expressing mutant LC3 (LC3-K30D, LC3-K51A, or LC3-L53A) all exhibit defective lipidation of LC3, a disrupted LC3–p62 interaction, and impaired autophagic degradation of p62, suggesting that the p62-binding site of LC3 is localized within an evolutionarily conserved domain. Importantly, whereas cells expressing these LC3 mutants exhibited similar overall autophagic activity comparable to that of cells expressing wild-type LC3, autophagy-mediated clearance of the aggregation-prone mutant Huntingtin was defective in the mutant-expressing cells. Together, these results suggest that p62 directly binds to the evolutionarily conserved cargo receptor-binding domain of Atg8/LC3 and selectively mediates the clearance of mutant Huntingtin.  相似文献   

5.
Physiology and morphology of olfactory neurons associated with the protocerebral lobe around the alpha-lobe of the mushroom body were studied in the brain of the honeybee Apis mellifera using intracellular recording and staining techniques. The responses of neurons to behaviorally relevant odorants (a blend, and components of the Nasonov pheromone, and some other non-pheromonal odors) were recorded. Different response patterns were observed within different neurons, and often within the same neuron, in response to different stimuli. All the neurons stained had innervations in the protocerebral lobe. The cell profiles varied from cells connecting the antennal lobe with both the protocerebral and lateral protocerebral lobes (projection neurons), cells linking the pedunculus of the mushroom body with both the protocerebral and lateral protocerebral lobes (PE1 neurons), cells linking the alpha-lobe and protocerebral lobe with the calyces of the mushroom body (feedback neurons), and cells linking the alpha-lobe and protocerebral lobe with the antennal lobe (recurrent neurons), to cells connecting the protocerebral lobe with the contralateral protocerebrum (bilateral neurons). These findings suggest that the protocerebral lobe acts as an olfactory center associating with other centers, and provides multi-layered recurrent networks within the protocerebrum and between the deutocerebrum and the protocerebrum in honeybee olfactory pathways.  相似文献   

6.
We have investigated the ontogenetic basis of locustatachykinin-like expression in a group of cells located in the pars intercerebralis of the grasshopper midbrain. These cells project fibers to the protocerebral bridge and the central body via a characteristic set of fiber bundles called the w, x, y, z tracts. Lineage analyses associate the immunoreactive cells with one of four neuroblasts (termed W, X, Y, Z) in each protocerebral hemisphere of the early embryo. Locustatachykinin is a ubiquitous myotropic peptide among the insects and its expression in the pars intercerebralis begins at approximately 60-65% of embryogenesis. This coincides with the appearance of the columnar neuroarchitecture characteristic of the central body. The number of immunoreactive cells in a given lineage is initially small, increases significantly in later embryogenesis, and attains the adult situation (about 7% of a lineage) in the first larval instar after hatching. Although each neuroblast generates progeny displaying a spectrum of cell body sizes, there is a clear morphological gradient, which reflects birth order within the lineage. Locustatachykinin expressing cells are located stereotypically at or near the tip of their lineage, which an age profile reveals places them amongst the first born progeny of their respective neuroblasts. Although these neuroblasts begin to generate progeny at approximately 25-27% of embryogenesis, their daughter cells remain quiescent with respect to locustatachykinin expression for over 30% of embryogenesis.  相似文献   

7.
The projections of four anatomically distinct groups of putative neurosecretory cells found within the supra-oesophageal ganglion of the leech Macrobdella decora were studied by intracellular injection of horseradish peroxidase. All four groups have their own characteristic branching pattern while sharing the common feature of possessing primary branches that project into the dorsal commissure. Numerous secondary processes extend from these primary branches to terminate within the neural lamella, as well as within the neuropile. Electron microscopy of the regions into which these secondary processes project reveals numerous neurosecretory terminals. The data suggests that the midregion of the dorsal commissure constitues a neurohemal complex. These observations strengthen the argument that the four groups of identified cells are indeed neurosecretory.  相似文献   

8.
We have investigated cell death in identified lineages of the central complex in the embryonic brain of the grasshopper Schistocerca gregaria. Progeny from these lineages lie in the pars intercerebralis and direct projections to the protocerebral bridge and then the central body via the w, x, y, z tracts. Osmium‐ethyl gallate staining reveals pycnotic cells exclusively in cortical regions, and concentrated specifically within the lineages of the W, X, Y, Z neuroblasts. Minimal cell death occurs in a sporadic, nonpatterned manner, in other protocerebral regions. Immunohistochemistry reveals pycnotic cells express the enzyme cleaved Caspase‐3 in their cytoplasm and are therefore undergoing programmed cell death (apoptosis). The number of pycnotic bodies in lineages of the pars intercerebralis varies with age: small numbers are present in the Y, Z lineages early in embryogenesis (42%), the number peaks at 67–80%, and then declines and disappears late in embryogenesis. Cell death may encompass up to 20% of a lineage at mid‐embryogenesis. Peak cell death occurs shortly after maximum neurogenesis in the Y, Z lineages, and is maintained after neurogenesis has ceased in these lineages. Cell death within a lineage is patterned. Apoptosis is more pronounced among older cells and almost absent among younger cells. This suggests that specific subsets of progeny will be culled from these lineages, and we speculate about the effect of apoptosis on the biochemical profile of such lineages. J. Morphol. 271:949–959, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Histamine serves a neurotransmitter role in arthropod photoreceptor neurons, but is also present in a small number of interneurons throughout the nervous system. In search of a suitable model system for the analysis of histaminergic neurotransmission in insects, we mapped the distribution of histamine in the brain of the desert locust Schistocerca gregaria by immunocytochemistry. In the optic lobe, apparently all photoreceptor cells of the compound eye with projections to the lamina and medulla showed intense immunostaining. Photoreceptors of the dorsal rim area of the eye had particularly large fiber diameters and gave rise to uniform varicose immunostaining throughout dorsal rim areas of the lamina and medulla. In the locust midbrain 21 bilateral pairs of histamine-immunoreactive interneurons were found, and 13 of these were reconstructed in detail. While most neuropil areas contained a dense meshwork of immunoreactive processes, immunostaining in the antennal lobe and in the calyces of the mushroom body was sparse and no staining occurred in the pedunculus and lobes of the mushroom body, in the protocerebral bridge, and in the lower division of the central body. A prominent group of four immunostained neurons had large cell bodies near the median ocellar nerve root and descending axonal fibers. These neurons are probably identical to previously identified primary commissure pioneer neurons of the locust brain. The apparent lack in the desert locust of certain histamine-immunoreactive neurons which were reported in the migratory locust may be responsible for differences in the physiological role of histamine between both species.The study was supported by the Deutsche Forschungsgemeinschaft, grants Ho 950/13 and 950/14  相似文献   

10.
11.
The derailed (drl) gene encodes a receptor tyrosine kinase (RTK) that governs aspects of axon guidance and muscle-epidermal interactions in the Drosophila embryo. To determine the types of neurons that express drl, we have examined a series of drl promoter fusions to axon-targeted reporters. We have identified enhancers that drive reporter expression in four distinct subtypes of embryonic neurons, all of which project axons in the anterior commissure of the developing nervous system. We also identified enhancers driving expression in the drl-expressing muscles and epidermal attachment cells. These enhancers define the classes of neurons projecting in the anterior commissure and can be used to precisely define axon pathfinding errors in drl and other mutants.  相似文献   

12.
We describe a new scaffold-free three-dimensional (3D) cell culture model using cholesteryl ester based lyotropic liquid crystal (LC) substrates. Keratinocytes were deposited randomly on the LC surface where they self-assembled into 3D microtissues or keratinospheroids. The cell density required to form spheroids was optimized. We investigated cell viability using dead/live cell assays. The adhesion characteristics of cells within the microtissues were determined using histological sectioning and immunofluorescence staining. Fourier transform infrared spectroscopy (FTIR) was used to characterize the biochemistry of the keratinospheroids. We found that both cells and microtissues could migrate on the LC surface. The viability study indicated approximately 80% viability of cells in the microtissues up to 20 days of culture. Strong intercellular adhesion was observed in the stratification of the multi-layered microspheroids using field emission-scanning electron microscopy (FE-SEM) and histochemical staining. The cytoskeleton and vinculins of the cells in the microtissues were expressed diffusely, but the microtissues were enriched with lipids and nucleic acids, which indicates close resemblance to the conditions in vivo. The basic 3D culture model based on LC may be used for cell and microtissue migration studies in response to cytochemical treatment.  相似文献   

13.
In this paper we describe the embryonic development of the polyclad flatworm Imogine mcgrathi. Imogine is an indirect developer that hatches as a planctonic Goette’s larva after an embryonic period of approximately 7 days. Light and electron microscopic analyses of sections of staged embryos were combined with antibody stainings of wholemounted embryos to reconstruct the origin and movement of the primordia of the various organ systems, with particular emphasis on the nervous system. We introduce a system of morphologically defined stages aimed at facilitating future studies and cross-species comparisons among flatworm embryos. Imogine embryos undergo typical spiral cleavage. Micromere quartets 1–3 form an irregular double layer of mesenchymal cells that during gastrulation expands over micromere quartet 4. Micromere 4d divides into several large mesendodermal precursors whose position defines the ventral pole of the embryo. These cells, along with the animal micromeres that obtained a sub-surface position during cleavage, form a deep layer of cells that gives rise to all internal structures, including the nervous system, musculature, nephridia, and gut. Micromeres 4a–c are large yolky cells that are incorporated into the lumen of the gut, but do not themselves contribute to the gut epithelium. Shortly after gastrulation, cell differentiation sets in. Cells located at the surface adopt epithelial characteristics and form cilia that result in continuous movement of the post-gastrula stage embryo. Deep cells at the lateral margins of the embryo become organized into a protonephridial tube. A cluster of approximately 50 deep cells at the anterior pole forms the brain, in which we have identified sets of founder neurons of the brain commissure and the dorsal and ventral connectives. The early differentiating neurons, along with other cells forming stabilized microtubules (ciliated cells of the epidermis, gut and protonephridia; apical gland cells) could be analyzed in detail because of their labeling with an antibody against acetylated α-tubulin. Our findings indicate that, despite significant differences in the cleavage pattern and arrangement of blastomeres in the early embryo, morphogenesis and organ formation of a polyclad embryo follows a pattern that is very similar to the pattern observed by us and others in phylogenetically more evolved rhabdocoel flatworms. Received: 10 February 2000 / Accepted: 10 April 2000  相似文献   

14.
Summary The neuroarchitecture of the central complex, a prominent neuropil in the midbrain of the holometabolan, Tenebrio molitor, is described throughout larval development. The analysis is based on classical silver impregnations and on fate-mapping of identified neurons using antisera against serotonin and FMRF-amide. In T. molitor, the central body is present in the first larval instar, and is formed by side branches of contralaterally projecting neurons. Glial cells surround eight neuropil compartments in the first larval instar. These subdivisions in the organization of the fan-shaped body are maintained throughout development. Intrinsic interneurons are found from the 5th larval instar onwards. In the last larval stage, the central complex consists of the fan-shaped body, the protocerebral bridge, and the anlage of the ellipsoid body. The cellular architecture of the fan-shaped body of the last larval instar resembles the basic structural characteristics of the adult. Serotonin-immunoreactive neurons and FMRF-amide immunoreactive neurons in the midbrain of the first larval instar show the basic structural features of the respective imaginal cells. The structural organizations of larval and adult midbrain are compared.Abbreviations a Anterior - AGT antenno-glomerular tract - aL -lobus - AL antennal lobe - AP anterior protocerebrum - bL -lobe - BSN bilateral symmetrical - FMRF amide-immunopositive neurons - CA calyx - CL1-CL4 serotonin-immunopositive neurons cluster 1–4 - d dorsal - DAB diaminobenzidine tetrahydrochloride - DC dorsal commissure - DCFB dorsal commissure of the fan-shaped body - DHT dorsal horizontal tract - DLTR dorsal lateral triangle - DMLP dorsal medial lateral protocerebrum - DN serotonin-immunopositive deuterocerebral neuron - EB ellipsoid body - en1, en2 extrinsic neurons connecting two FB-subcompartments - esn extrinsic subcompartmental neuron - l lateral - FB fan-shaped body - FN serotonin-immunopositive fan-shaped neuron - fs1, fs2 fanshaped neurons of type 1 and 2 - GC great commissure - HF horizontal fibres - in intrinsic neuron connecting two FB-subcompartments - isn intrinsic subcompartmental neuron - IT isthmus tract - LF large-field neurons - LFASC lateral fascicle - LMFASC lateral median fascicle - MB median bundles - MLP medial lateral protocerebrum - p posterior - P pedunculus - PB protocerebral bridge - pb-fb protocerebral bridge-fan-shaped body connection - PBS phosphate-buffered saline - PDC posterio-dorsal commissure - PTX phosphate-buffered saline containing Triton X-100 - SU suboesophageal ganglion - SVT small ventral triangles - TN 1,2 tritocerebral serotonin-immunoreactive neuron 1,2 - v ventral - VB ventral body - VBC ventral body commissure - VCBC ventral central body commissure - VCFB ventral commissure of the fan-shaped body  相似文献   

15.
In this study, we established rat 3Y1 embryo cell lines expressing FosB and DeltaFosB as fusion proteins (ER-FosB, ER-DeltaFosB) with the ligand-binding domain of human estrogen receptor (ER). The binding of estrogen to the fusion proteins resulted in their nuclear translocation. After estrogen administration, exponentially growing cells expressing ER-DeltaFosB, and to a lesser extent ER-FosB, underwent morphological alteration from the flat fibroblastic shape to an extended bipolar shape, and ceased proliferating. Such morphological alteration was also induced in quiescent cells expressing ER-DeltaFosB and ER-FosB after one round of cell division triggered by estrogen administration. The cells expressing ER-DeltaFosB changed shape frequently, and the content of F-actin in the cytoplasm detected by binding of Alexa 488-phalloidin significantly decreased after the morphological alteration. By two-dimensional gel electrophoresis analysis of cellular proteins from the cells expressing ER-DeltaFosB, we identified several proteins whose expression either increased or decreased after estrogen administration. Two of these proteins were identified from their amino acid sequences as novel processed form of galectin-1.  相似文献   

16.
The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD''s affinity for the doublet microtubule.  相似文献   

17.
While the larval midgut of Manduca sexta has been intensively studied as a model for ion transport, the developmental origins of this organ are poorly understood. In our study we have used light and electron microscopy to investigate the process of midgut epithelial cell differentiation in the embryo. Our studies were confined to the period between 56 and 95 hr of embryonic development (hatching is at 101 hr at 25 degrees C), since preliminary studies indicated that all morphologically visible differentiation of the midgut epithelium occurs during this time. At 56 hr the midgut epithelium is organized into a ragged pseudostratified epithelium. Over the next 10 hr, the embryo molts and the midgut epithelium takes on a distinctive character in which the future goblet and columnar cells can be identified. With further differentiation, closed vesicles in the goblet cells expand and subsequently communicate to the outside by way of a valve. The columnar cells form numerous microvilli on their apical surfaces that extend over the goblet cells. Both cell types form basal folds from a series of plasmalemmal invaginations. Differentiation occurs concurrent with a six-fold elongation of these cells.  相似文献   

18.
Dynein light chain 1 (LC1/DNAL1) is one of the most highly conserved components of ciliary axonemal outer arm dyneins, and it associates with both a heavy chain motor unit and tubulin located within the A-tubule of the axonemal outer doublet microtubules. In a variety of model systems, lack of LC1 or expression of mutant forms leads to profound defects in ciliary motility, including the failure of the hydrodynamic coupling needed for ciliary metachronal synchrony, random stalling during the power/recovery stroke transition, an aberrant response to imposed viscous load, and in some cases partial failure of motor assembly. These phenotypes have led to the proposal that LC1 acts as part of a mechanical switch to control motor function in response to alterations in axonemal curvature. Here we have used NMR chemical shift mapping to define the regions perturbed by a series of mutations in the C-terminal domain that yield a range of phenotypic effects on motility. In addition, we have identified the subdomain of LC1 involved in binding microtubules and characterized the consequences of an Asn → Ser alteration within the terminal leucine-rich repeat that in humans causes primary ciliary dyskinesia. Together, these data define a series of functional subdomains within LC1 and allow us to propose a structural model for the organization of the dynein heavy chain-LC1-microtubule ternary complex that is required for the coordinated activity of dynein motors in cilia.  相似文献   

19.
《Autophagy》2013,9(8):1175-1184
Autophagy is an evolutionarily conserved catabolic process that involves the entrapment of cytoplasmic components within characteristic vesicles for their delivery to and degradation within lysosomes. Alterations in autophagic signaling are found in several human diseases including cancer. Here, we describe a validated immunohistochemical protocol for the detection of LC3 puncta in human formalin-fixed, paraffin-embedded cancer specimens that can also be applied to mouse tissues. In response to systemic chemotherapy, autophagy-competent mouse tumors exhibited LC3 puncta, which did not appear in mouse cancers that had been rendered autophagy-deficient by the knockdown of Atg5 or Atg7. As compared with normal tissues, LC3 staining was moderately to highly elevated in the large majority of human cancers studied, albeit tumors of the same histological type tended to be highly heterogeneous in the number and intensity of LC3 puncta per cell. Moreover, tumor-infiltrating immune cells often were highly positive for LC3. Altogether, this protocol for LC3 staining appears suitable for the specific detection of LC3 puncta in human specimens, including tissue microarrays. We surmise that this technique can be employed for retrospective or prospective studies involving large series of human tumor samples.  相似文献   

20.
We have examined the electrical activity of interneurons within the higher levels of the crayfish olfactory system. In unstimulated isolated crayfish head preparations, local protocerebral interneurons (LPI) of the hemiellipsoid bodies generate periodic, low-frequency membrane depolarizations. The most reasonable explanation for these baseline fluctuations, which were exhibited by all of the LPIs examined and which were reversibly abolished by either tetrodotoxin or low-calcium saline solution, is that they reflect periodic synaptic drive from the axon terminals of olfactory projection neurons. One-third of tested LPIs generated impulses in response to the odor stimuli we applied to the antennules. Those cells that did respond exhibited a brief excitatory postsynaptic potential and one or two action potentials, even during prolonged odor pulses. Many of the responding neurons also exhibited a delayed impulse burst 1 or 2 s following the stimulus pulse. Most of the responding cells recovered their sensitivity to odors very slowly, exhibiting disadaptation periods of several minutes. The apparent refractory nature of individual LPIs to olfactory stimulation is attributed in part to a hypothesized selectivity of connections between projection neurons and protocerebral targets and in part to the electrical isolation of the recording electrode from many regions of the extensive LPI dendritic tree. Accepted: 20 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号