首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Injection of inositol trisphosphate (IP3) into oocytes of Xenopus laevis induces the appearance of a transient inward (Tin) current on hyperpolarization of the membrane. This current is carried largely by chloride ions, but is shown to depend on extracellular calcium, because it is abolished by removal of calcium in the bathing fluid or by addition of manganese. Recordings with aequorin as an intracellular calcium indicator show that a calcium influx is activated by hyperpolarization after intracellular injection of IP3 as well as after activation of neurotransmitter receptors thought to mediate a rise in IP3. Furthermore, by substituting barium for calcium in the bathing solution, inward barium currents can be recorded during hyperpolarization. We conclude that intracellular IP3 modulates the activity of a class of calcium channels, so as to allow an influx of calcium on hyperpolarization. In normal Ringer solution this then leads to the generation of a chloride current, because of the large numbers of calcium-dependent chloride channels in the oocyte membrane.  相似文献   

2.
Injection of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) into voltage-clamped oocytes of Xenopus laevis elicited an oscillatory chloride membrane current. This response did not depend upon extracellular calcium, because it could be produced in calcium-free solution and after addition of cobalt to block calcium channels in the surface membrane. However, it was abolished after intracellular loading with the calcium chelating agent EGTA, indicating a dependence upon intracellular calcium. The mean dose of Ins(1,3,4,5)P4 required to elicit a threshold current was 4 x 10(-14) mol. In comparison, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) gave a similar oscillatory current with doses of about one twentieth as big. Hyperpolarization of the oocyte membrane during activation by Ins(1,3,4,5)P4 elicited a transient inward current, as a result of the opening of calcium-dependent chloride channels subsequent to the entry of external calcium. In some oocytes the injection of Ins(1,3,4,5)P4 was itself sufficient to allow the generation of the transient inward current, whereas in others a prior injection of Ins(1,4,5)P3 was required. We conclude that Ins(1,3,4,5)P4 causes the release of intracellular calcium from stores in the oocyte, albeit with less potency than Ins(1,4,5)P3. In addition, Ins(1,3,4,5)P4 activates voltage-sensitive calcium channels in the surface membrane, via a process that may require 'priming' by Ins(1,4,5)P3.  相似文献   

3.
Agonists that utilize the calcium-mobilizing second messenger inositol(1,4,5)trisphosphate Ins(1,4,5)P3 usually generate oscillations in intracellular calcium. Such oscillations, based on the periodic release of calcium from the endoplasmic reticulum, can also be induced by injecting cells with Ins(1,4,5)P3. The mechanism responsible for oscillatory activity was studied in Xenopus oocytes by injecting them with different inositol trisphosphates. The plasma membrane of Xenopus oocytes has calcium-dependent chloride channels that open in response to calcium, leading to membrane depolarization. Oscillations in calcium were thus monitored by recording membrane potential. The naturally occurring Ins(1,4,5)P3 produced a large initial transient followed by a single transient or a burst of oscillations. By contrast, two analogues (Ins(2,4,5)P3 and Ins(1,4,5)P(S)3) produced a different oscillatory pattern made up of a short burst of sharp transients. Ins(1,3,4,5)P4 had no effect when injected by itself, and it also failed to modify the oscillatory responses to either Ins(2,4,5)P3 or Ins(1,4,5)P(S)3. Both analogues failed to induce a response when injected immediately after the initial Ins(1,4,5)P3-induced response, indicating that they act on the same intracellular pool of calcium. The existence of different oscillatory patterns suggests that there may be different mechanisms for setting up calcium oscillations. The Ins(2,4,5)P3 and Ins(1,4,5)P(S)3 analogues may initiate oscillations through a negative feedback mechanism whereby calcium inhibits its own release. The two-pool model is the most likely mechanism to describe the Ins(1,4,5)P3-induced oscillations.  相似文献   

4.
Inositol phosphate action in an intact cell has been investigated by intracellular microinjection of eight inositol phosphate derivatives into Xenopus laevis oocytes. These cells have calcium-regulated chloride channels but do not have a calcium-induced calcium release system. Microinjection of inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,2-(cyclic)-4,5-trisphosphate (cIP3), inositol 1,4,5-trisphosphate (IP3), or inositol 4,5-bisphosphate [(4,5)IP2], open chloride channels to induce a membrane depolarization. However, inositol 1-phosphate (IP1), inositol 1,3,4,5,6-pentakisphosphate (IP5), inositol 1,4-bisphosphate, or inositol 3,4-bisphosphate are unable to induce this depolarization. The depolarization is mimicked by calcium microinjection, inhibited by EGTA coinjection, and is insensitive to removal of extracellular calcium. By means of the depolarization response, the efficacy of various inositol phosphate derivatives are compared. IP3 and cIP3 induce similar half-maximal, biphasic depolarization responses at an intracellular concentration of approximately 90 nM, whereas IP4 induces a mono- or biphasic depolarization at approximately 3400 nM. At concentrations similar to that required for IP3 and cIP3, (4,5)IP2 induces a long-term (greater than 40 min) depolarization. The efficacy (cIP3 = IP3 = (4,5)IP2 much greater than IP4) and action of the various inositol phosphates in an intact cell and their inability to induce meiotic cell division are discussed.  相似文献   

5.
Stimulation of many nonexcitable cells by Ca2(+)-mobilizing receptor agonists causes oscillating elevations of the intracellular free Ca2+ concentration ((Ca2+]i), rather than a continuous increase. It has been proposed that the frequency at which [Ca2+]i oscillates determines the biological response. Because the occurrence of [Ca2+] oscillations is observed together with endogenous inositol polyphosphate (InsPs) production or following InsPs application, we injected Xenopus laevis oocytes with InsPs and monitored Ca2(+)-activated Cl- currents as an assay of [Ca2+]i. Microinjection of the poorly metabolizable inositol trisphosphate (InsP3) derivatives inositol 2,4,5-trisphosphate (Ins(2,4,5)P3) and inositol 1,4,5-trisphosphorothioate (Ins(1,4,5) P3S3) induced [Ca2+]i oscillations. The frequency at which [Ca2+]i oscillated increased with the injected dose, indicating that the frequency-generating mechanism lies distal to InsP3 production and that generation of oscillations does not require either oscillation of InsP3 levels or InsP3 metabolism. Injections of high doses of Ins(1,4,5)P3 or Ins(2,4,5)P3 inhibited ongoing oscillations, whereas Ca2+ injections decreased the amplitude of Ins(2,4,5)P3-induced oscillations without altering their frequency. Injections of the Ins(1,4,5)P3 metabolite inositol 1,3,4,5-tetrakisphosphate also caused oscillations whose frequency was related to the injected dose, although inositol tetrakisphosphate injection induced an increase in the cellular level of Ins(1,4,5)P3. The results suggest a multicomponent oscillatory system that includes the InsP3 target as well as a Ca2(+)-sensitive step that modulates amplitude.  相似文献   

6.
Stimuli which act through the second messenger inositol 1,4,5-trisphosphate (InsP3) often increase free intracellular Ca2+ concentration ([Ca2+]i) in a localized subcellular area. Actively propagated Ca2+ waves then extend this focal Ca2+ signal to other parts of the cell. To understand how cells may control the spatial distribution of Ca2+, we investigated the mechanism by which Ca2+ waves propagate through the cytoplasm of Xenopus oocytes. Heparin, which inhibits the binding of InsP3 to its receptor, prevented the migration of Ca2+ waves induced by a poorly metabolized InsP3 (InsP3S3). This result suggested that Ca2+ waves move through the cell via the serial release of Ca2+ from InsP3-sensitive stores. Interventions which caused a localized increase in [Ca2+]i without elevations of InsP3 did not trigger Ca2+ waves. In the presence of a Ins-P3S3, however, endogenously released or locally injected Ca2+ elicited Ca2+ waves. A cooperative interaction between Ca2+ and InsP3 may therefore be responsible for the propagation of Ca2+ waves.  相似文献   

7.
M Lupu-Meiri  H Shapira  Y Oron 《FEBS letters》1988,240(1-2):83-87
Shallow injection of inositol 1,4,5-trisphosphate (IP3) near the animal pole of the Xenopus oocyte resulted in a large depolarizing current that decayed rapidly. A similar injection near the vegetal pole produced a much smaller response characterized by a significantly slower rate of decay. Injection of CaCl2 near the animal pole of the oocyte resulted in a large depolarizing current characterized by rapid rise and decay times. Injection near the vegetal pole of the cell produced responses that exhibited similar amplitudes but much longer rise and decay times. The protein kinase C (PK-C) activator, beta-phorbol 12-myristate 13-acetate (PMA), significantly enhanced the rapid responses to IP3 injections at either hemisphere but did not affect the amplitudes of the responses to CaCl2. The PK-C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) had no effect on the responses to CaCl2. These results imply an asymmetric distribution of calcium stores and chloride channels between the two hemispheres of the oocyte.  相似文献   

8.
I Parker  Y Yao    V Ilyin 《Biophysical journal》1996,70(1):222-237
Inositol 1,4,5-trisphosphate (InsP3) acts on intracellular receptors to cause liberation of Ca2+ ions into the cytosol as repetitive spikes and propagating waves. We studied the processes underlying this regenerative release of Ca2+ by monitoring with high resolution the kinetics of Ca2+ flux evoked in Xenopus oocytes by flash photolysis of caged InsP3. Confocal microfluorimetry was used to monitor intracellular free [Ca2+] from femtoliter volumes within the cell, and the underlying Ca2+ flux was then derived from the rate of increase of the fluorescence signals. A threshold amount of InsP3 had to be photoreleased to evoke any appreciable Ca2+ signal, and the amount of liberated Ca2+ then increased only approximately fourfold with maximal stimulation, whereas the peak rate of increase of Ca2+ varied over a range of nearly 20-fold, reaching a maximum of approximately 150 microMs-1. Ca2+ flux increased as a first-order function of [InsP3]. Indicating a lack of cooperativity in channel opening, and was half-maximal with stimuli approximately 10 times threshold. After a brief photolysis flash, Ca2+ efflux began after a quiescent latent period that shortened from several hundred milliseconds with near-threshold stimuli to 25 ms with maximal flashes. This delay could not be explained by an initial "foot" of Ca2+ increasing toward a threshold at which regenerative release was triggered, and the onset of release seemed too abrupt to be accounted for by multiple sequential steps involved in channel opening. Ca2+ efflux increased to a maximum after the latent period in a time that reduced from > 100 ms to approximately 8 ms with increasing [InsP3] and subsequently declined along a two-exponential time course: a rapid fall with a time constant shortening from > 100 ms to approximately 25 ms with increasing [InsP3], followed by a much smaller fail persisting for several seconds. The results are discussed in terms of a model in which InsP3 receptors must undergo a slow transition after binding InsP3 before they can be activated by cytosolic Ca2+ acting as a co-agonist. Positive feedback by liberated Ca2+ ions then leads to a rapid increase in efflux to a maximal rate set by the proportion of receptors binding InsP3. Subsequently, Ca2+ efflux terminates because of a slower inhibitory action of cytosolic Ca2+ on gating of InsP3 receptor-channels.  相似文献   

9.
The proposed Ca(2+)-signaling actions of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), formed by phosphorylation of the primary Ca(2+)-mobilizing messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), were analyzed in NIH 3T3 and CCL39 fibroblasts transfected with rat brain Ins(1,4,5)P3 3-kinase. In such kinase-transfected cells, the conversion of Ins(1,4,5)P3 to Ins(1,3,4,5)P4 during agonist stimulation was greatly increased, with a concomitant reduction in Ins(1,4,5)P3 levels and attenuation of both the cytoplasmic Ca2+ increase and the Ca2+ influx response. This reduction in Ca2+ signaling was observed during activation of receptors coupled to guanine nucleotide-binding proteins (thrombin and bradykinin), as well as with those possessing tyrosine kinase activity. Single-cell Ca2+ measurements in CCL39 cells revealed that the smaller averaged Ca2+ response of enzyme-transfected cells was due to a marked increase in the number of cells expressing small and slow Ca2+ increases, in contrast to the predominantly large and rapid Ca2+ responses of vector-transfected controls. There was no evidence that high Ins(1,3,4,5)P4 levels promote Ca2+ mobilization, Ca2+ entry, or Ca2+ sequestration. These data indicate that Ins(1,4,5)P3 is the major determinant of the agonist-induced Ca2+ signal in fibroblasts and that Ins(1,3,4,5)P4 does not appear to contribute significantly to this process. Instead, Ins(1,4,5)P3 3-kinase may serve as a negative regulator of the Ca(2+)-phosphoinositide signal transduction mechanism.  相似文献   

10.
The effect of Ins 1,3,4,5-P4 on the intracellular Ca2+ mobilization produced by Ins 1,4,5-P3 has been examined in permeabilized hepatocytes. Ins 1,3,4,5-P4 did not affect the magnitude of the Ins 1,4,5-P3-mediated Ca2+ release but did inhibit re-accumulation of the released Ca2+ back into intracellular stores. This effect was not mimicked by Ins 1,3,4-P3. In hepatocytes, the re-uptake phase of the response results from Ins 1,4,5-P3 hydrolysis. Measurements using labeled substrates indicate that Ins 1,3,4,5-P4 inhibits the hydrolysis of Ins 1,4,5-P3 and vice versa. Since the removal of the 5-phosphate on Ins 1,4,5-P3 and Ins 1,3,4,5-P4 is a common step in the disposal of both compounds, it is suggested that one of the biological effects of Ins 1,3,4,5-P4 may be to slow hydrolysis of Ins 1,4,5-P3 and thereby prolong the duration of a Ca2+ transient.  相似文献   

11.
In assays containing a physiological concentration of inositol 1,3,4,5-tetrakisphosphate (1 microM), this isomer was attacked by both 3- and 5-phosphatases present in rat parotid homogenates and 100,000 X g supernatant and particulate fractions. As the concentration of cytosolic protein in the assay was decreased, the specific activity of the soluble 3-phosphatase increased significantly. In contrast, the specific activity of particulate 3-phosphatase was independent of protein concentration. At the lowest protein concentrations tested, the sum of soluble and particulate 3-phosphatase specific activities was 2.5-fold greater than that of the parent homogenate. These observations indicate that parotid cytosol contains a hitherto undescribed endogenous mechanism for inhibiting 3-phosphatase. The effects upon 3- and 5-phosphatase of a number of inositol polyphosphates were studied. Both activities were inhibited by inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate (IC50 approximately 50 microM). Inositol 3,4,5,6-tetrakisphosphate was a more potent inhibitor of 3-phosphatase (IC50 about 10 microM) and did not affect 5-phosphatase. Inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate were very potent inhibitors of 3-phosphatase (IC50 values of 1 and 0.5 microM, respectively); these polyphosphates did not affect 5-phosphatase activity at concentrations of up to 10 microM. Inositol 1,3,4,5,6-pentakisphosphate was a competitive inhibitor of the 3-phosphatase, whereas inositol hexakisphosphate was a mixed inhibitor. These data lead to the proposal that the inositol 1,3,4,5-tetrakisphosphate 3-phosphatase is unlikely to be an important enzyme activity in vivo.  相似文献   

12.
The formation and metabolism of inositol pentakis-and hexakisphosphates (InsP5 and InsP6) were investigated in Xenopus laevis oocytes. After [3H]inositol injection, [3H]InsP5 and subsequently [3H]Insp6 increased progressively over 72 h. In intact oocytes, [3H]InsP5 was progressively converted to [3H]InsP6 from 6 to 72 h of incubation and was not metabolized to lower inositol phosphates. In contrast, [3H]InsP6 remained unmetabolized for up to 72 h. These data are consistent with the kinetics of the increases in [3H]InsP5 and [3H]InsP6 in [3H]inositol-labeled oocytes. The highly phosphorylated inositols showed significant changes during oogenesis and maturation. In oocytes incubated for 48 h after [3H]inositol injection, the radioactive incorporation into polyphosphoinositols increased progressively from stage 3 to stage 6, with 5- and 6-fold rises (cpm/mg protein) for [3H]InsP5 and [3H]InsP6, respectively. These developmental changes were associated with 5-fold increases in [3H]inositol tetrakisphosphate between stages 3 and 6 of oogenesis. Induction of oocyte maturation by progesterone (1 microM) during the last 12 of a 36-h incubation with [3H]inositol doubled the levels of [3H]InsP6 relative to [3H]InsP5, suggesting that the activity of inositol pentakisphosphate kinase increases during maturation. These results provide direct evidence for metabolic conversion of InsP5 to InsP6 in animal cells and show that the higher inositol polyphosphates, unlike the lower phosphoinositols, are extraordinarily stable. These species increase markedly during ovum development and may play a regulatory role in oogenesis and maturation.  相似文献   

13.
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.  相似文献   

14.
Microinjection of inositol 1,3,4,5-tetrakisphosphate or inositol 1,4,5-trisphosphate induced distinct chloride membrane currents in defolliculated Xenopus laevis oocytes. To decide whether these Cl(-)-currents were due to the injected compounds or their metabolic products, [3H]Ins(1,3,4,5)P4 or [3H]Ins(1,4,5)P3 were injected into oocytes and their metabolites were analyzed by HPLC. Our results indicate that Ins(1,3,4,5)P4 itself or its metabolite Ins(1,3,4,6)P4 is able to induce Cl(-)-membrane currents, most likely by increasing the cytosolic Ca(++)-concentration.  相似文献   

15.
Others have reported that microinjection of inositol 1,4,5-trisphosphate (InsP3) releases stored intracellular Ca2+ and causes fertilization envelope elevation, part of the activation process normally initiated by fertilization in deuterostome eggs. In the protostome, Spisula solidissima, germinal vesicle breakdown (GVBD) is the first visible response of the egg to fertilization. To test the effects of InsP3 on egg activation in this organism, we microinjected the compound into oocytes. Microinjection of 0.4-7.0 x 10(-21) moles of InsP3 (equivalent to 5-80 pM if distributed throughout the cell) elicited GVBD in a dose-dependent manner, demonstrating that increased oocyte InsP3 can mimic part of the activation process in this protostome. Synthesis of InsP3 occurs in vivo when phosphatidylinositol 4,5-bisphosphate (PtdInsP2) is hydrolyzed by phospholipase C. To determine whether stimulus-induced synthesis of InsP3 occurs after fertilization of Spisula oocytes, we labeled oocyte lipids with [32P]orthophosphate and measured the radioactivity in phospholipids after insemination. Fertilization resulted in a rapid, transient loss of radioactivity from PtdInsP2. Because the radioactivity in phosphatidylinositol 4-phosphate and other phospholipids did not change, the loss of radioactivity from PtdInsP2 is most likely due to its hydrolysis, yielding InsP3 and diacylglycerol. The latter compound activates protein kinase C which has also been shown to be involved in regulating Spisula oocyte GVBD. Since both of these compounds appear to be early products of fertilization, they could coordinately activate Ca2+- and protein kinase C-dependent processes involved in Spisula oocyte GVBD. These data indicate that egg activation in this protostome includes pathways similar to those found in deuterostome eggs and in other eukaryotic cells.  相似文献   

16.
In bovine adrenal microsomes, Ins(1,4,5)P3 binds to a specific high-affinity receptor site (Kd = 11 nM) with low affinity for two other InsP3 isomers, Ins(1,3,4)P3 and Ins(2,4,5)P3. In the same subcellular fractions Ins(1,4,5)P3 was also the most potent stimulus of Ca2+ release of all the inositol phosphates tested. Of the many inositol phosphates recently identified in angiotensin-II-stimulated adrenal glomerulosa and other cells, Ins(1,3,4,5)P4 has been implicated as an additional second messenger that may act in conjunction with Ins(1,4,5)P3 to elicit Ca2+ mobilization. In the present study, an independent action of Ins(1,3,4,5)P4 was observed in bovine adrenal microsomes. Heparin, a sulphated polysaccharide which binds to Ins(1,4,5)P3 receptors in several tissues, inhibited both the binding of radiolabelled Ins(1,4,5)P3 and its Ca2(+)-releasing activity in adrenal microsomes. In contrast, heparin did not inhibit the mobilization of Ca2+ by Ins(1,3,4,5)P4, even at doses that abolished the Ins(1,4,5)P3 response. Such differential inhibition of the Ins(1,4,5)P3- and Ins(1,3,4,5)P4-induced Ca2+ responses by heparin indicates that Ins(1,3,4,5)P4 stimulates the release of Ca2+ from a discrete intracellular store, and exerts this action via a specific receptor site that is distinct from the Ins(1,4,5)P3 receptor.  相似文献   

17.
Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver   总被引:29,自引:0,他引:29  
The inositol lipid pools of isolated rat hepatocytes were labeled with [3H]myo-inositol, stimulated maximally with vasopressin and the relative contents of [3H]inositol phosphates were measured by high performance liquid chromatography. Inositol 1,4,5-trisphosphate accumulated rapidly (peak 20 s), while inositol 1,3,4-trisphosphate and a novel inositol phosphate (ascribed to inositol 1,3,4,5-tetrakisphosphate) accumulated at a slower rate over 2 min. Incubation of hepatocytes with 10 mM Li+ prior to vasopressin addition selectively augmented the levels of inositol monophosphate, inositol 1,4-bisphosphate, and inositol 1,3,4-trisphosphate. A kinase was partially purified from liver and brain cortex which catalyzed an ATP-dependent phosphorylation of [3H]inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. Incubation of purified [3H]inositol 1,3,4,5-tetrakisphosphate with diluted liver homogenate produced initially inositol 1,3,4-trisphosphate and subsequently inositol 1,3-bisphosphate, the formation of which could be inhibited by Li+. The data demonstrate that the most probable pathway for the formation of inositol 1,3,4,5-tetrakisphosphate is by 3-phosphorylation of inositol 1,4,5-trisphosphate by a soluble mammalian kinase. Degradation of both compounds occurs first by a Li+-insensitive 5-phosphatase and subsequently by a Li+-sensitive 4-phosphatase. The prolonged accumulation of both inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in vasopressin-stimulated hepatocytes suggest that they have separate second messenger roles, perhaps both relating to Ca2+-signalling events.  相似文献   

18.
Intracellular calcium was monitored by the use of aequorin in voltage-clamped oocytes of Xenopus laevis. Injection of inositol trisphosphate (IP3) into oocytes elicited slowly rising and decaying aequorin/calcium signals and produced oscillatory chloride membrane currents. These responses did not depend upon extracellular calcium, since they could be elicited in calcium-free solution and after addition of cobalt or lanthanum to block calcium channels in the surface membrane. We conclude that IP3 causes the release of calcium from intracellular stores in the oocyte. Injections of calcium gave aequorin and membrane current responses that were more transient than those seen with IP3.  相似文献   

19.
Xenopus laevis oocytes undergo maturation when they are injected with large quantities of crude ribosomes from various origins: X laevis full-grown or matured oocytes, Xenopus ovaries and embryos, Xenopus liver or mouse liver. All have the same efficiency, whatever their origin: they include 50-90% maturation in the injected oocytes at about the same speed as progesterone treatment. The ribosomal preparations are inactive wen injected into recipient oocytes pretreated with cholera toxin or cycloheximide. After dissociation with the high salt extract, but not with the subunits. Hypotheses concernning the mode action of this ribosomal extract are disussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号