首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the expression and properties of the intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) channel in the GL-15 human glioblastoma cell line. Macroscopic IK(Ca) currents on GL-15 cells displayed a mean amplitude of 7.2+/-0.8 pA/pF at 0 mV, at day 1 after plating. The current was inhibited by clotrimazole (CTL, IC(50)=257 nM), TRAM-34 (IC(50)=55 nM), and charybdotoxin (CTX, IC(50)=10.3 nM). RT-PCR analysis demonstrated the expression of mRNA encoding the IK(Ca) channel in GL-15 cells. Unitary currents recorded using the inside-out configuration had a conductance of 25 pS, a K(D) for Ca(2+) of 188 nM at -100 mV, and no voltage dependence. We tested whether the IKCa channel expression in GL-15 cells could be the result of an increased ERK activity. Inhibition of the ERK pathway with the MEK antagonist PD98059 (25 muM, for 5 days) virtually suppressed the IK(Ca) current in GL-15 cells. PD98059 treatment also increased the length of cellular processes and up-regulated the astrocytic differentiative marker GFAP. A significant reduction of the IKCa current amplitude was also observed with time in culture, with mean currents of 7.17+/-0.75 pA/pF at 1-2 days, and 3.11+/-1.35 pA/pF at 5-6 days after plating. This time-dependent downregulation of the IK(Ca) current was not accompanied by changes in the ERK activity, as assessed by immunoblot analysis. Semiquantitative RT-PCR analysis demonstrated a ~35% reduction of the IK(Ca) channel mRNA resulting from ERK inhibition and a approximately 50% reduction with time in culture.  相似文献   

2.
Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases.  相似文献   

3.
We have characterized the native voltage-dependent K(+) (K(v)) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with K(v)2.1 and K(v)2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEK(Kv2.1) and HEK(Kv2.2)). RUSMC were perfused with Hanks' solution at 37°C and studied using the patch-clamp technique with K(+)-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca(2+)-activated K(+) (BK) currents and depolarized to +40 mV for 500 ms to evoke K(v) currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3-5) but were blocked by stromatoxin-1 (ScTx, IC(50) ~130 nM), consistent with the idea that the currents were carried through K(v)2 channels. RNA was detected for K(v)2.1, K(v)2.2, and the silent subunit K(v)9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both K(v)2 subtypes and K(v)9.3 in isolated RUSMC. HEK(Kv2.1) and HEK(Kv2.2) currents were blocked in a concentration-dependent manner by ScTx, with estimated IC(50) values of ~150 nM (K(v)2.1, n = 5) and 70 nM (K(v)2.2, n = 6). The mean half-maximal voltage (V(1/2)) of inactivation of the USMC K(v) current was -56 ± 3 mV (n = 9). This was similar to the HEK(Kv2.1) current (-55 ± 3 mV, n = 13) but significantly different from the HEK(Kv2.2) currents (-30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that K(v)2.1 channels contribute significantly to the K(v) current in RUSMC.  相似文献   

4.
The phenothiazine antipsychotic agent thioridazine has been linked with prolongation of the QT interval on the electrocardiogram, ventricular arrhythmias, and sudden death. Although thioridazine is known to inhibit cardiac hERG K(+) channels there is little mechanistic information on this action. We have investigated in detail hERG K(+) channel current (I(hERG)) blockade by thioridazine and identified a key molecular determinant of blockade. Whole-cell I(hERG) measurements were made at 37 degrees C from human embryonic kidney (HEK-293) cells expressing wild-type and mutant hERG channels. Thioridazine inhibited I(hERG) tails at -40mV following a 2s depolarization to +20mV with an IC(50) value of 80nM. Comparable levels of I(hERG) inhibition were seen with physiological command waveforms (ventricular and Purkinje fibre action potentials). Thioridazine block of I(hERG) was only weakly voltage-dependent, though the time dependence of I(hERG) inhibition indicated contingency of blockade upon channel gating. The S6 helix point mutation F656A almost completely abolished, and the Y652A mutation partially attenuated, I(hERG) inhibition by thioridazine. In summary, thioridazine is one of the most potent hERG K(+) channel blockers amongst antipsychotics, exhibiting characteristics of a preferential open/activated channel blocker and binding at a high affinity site in the hERG channel pore.  相似文献   

5.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

6.
The binding of (+) (3H) PN 200-110 to high and low affinity sites in mammalian portal vein smooth muscle membranes was characterized. Binding affinities were 0.09 and 30 nM for the high and low affinity sites, respectively, and binding site densities were 45 and 400 fmoles/mg of protein for the respective sites. (+) PN 200-110 blocked both fast and slow calcium currents in isolated cells from portal vein smooth muscle. The blockade of slow calcium current was voltage-dependent as PN 200-110 bound with higher affinity to inactivated slow calcium channels (IC50 = 0.03 nM) than to resting channels (IC50 = 0.15 nM). The blockade of fast calcium current was voltage-independent (IC50 = 45 nM). The IC50 values found from electrophysiological experiments for the binding to inactivated slow and fast calcium channels are similar to the Kd values determined by radioligand binding.  相似文献   

7.
Small conductance Ca2+-activated K+ (SK) channels have been cloned from mammalian brain, but little is known about the molecular characteristics of SK channels in nonexcitable tissues. Here, we report the isolation from rat liver of an isoform of SK3. The sequence of the rat liver isoform differs from rat brain SK3 in five amino acid residues in the NH3 terminus, where it more closely resembles human brain SK3. SK3 immunoreactivity was detectable in hepatocytes in rat liver and in HTC rat hepatoma cells. Human embryonic kidney (HEK-293) cells transfected with liver SK3 expressed 10 pS K+ channels that were Ca2+ dependent (EC(50) 630 nM) and were blocked by the SK channel inhibitor apamin (IC(50) 0.6 nM); whole cell SK3 currents inactivated at membrane potentials more positive than -40 mV. Notably, the Ca2+ dependence, apamin sensitivity, and voltage-dependent inactivation of SK3 are strikingly similar to the properties of hepatocellular and biliary epithelial SK channels evoked by metabolic stress. These observations raise the possibility that SK3 channels influence membrane K+ permeability in hepatobiliary cells during liver injury.  相似文献   

8.
《Life sciences》1993,53(18):PL285-PL290
It has been suggested that sigma receptor antagonists may be useful as antipsychotic drugs. N, N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100) is a novel compound with high affinity for the sigma receptor (IC50 = 4.16 nM), but low affinity (IC50 > 1000 nM) for D1, D2, 5-HT1A, 5-HT2 and phencyclidine (PCP) receptors. The head-weaving behavior induced by either (+)SKF10047 or PCP was dose-dependently antagonized by NE-100 with oral ED50 at 0.27 and 0.12 mg/kg, respectively. NE-100 did not affect dopamine agonists-induced stereotyped behavior and/or hyperactivity. NE-100 failed to induce catalepsy in rats. These findings indicate that NE-100 may have antipsychotic activity without the liability of motor side effects typical of neuroleptics.  相似文献   

9.
10.
This study examined the role of outward K(+) currents in the acinar cells underlying secretion from Brunner's glands in guinea pig duodenum. Intracellular recordings were made from single acinar cells in intact acini in in vitro submucosal preparations, and videomicroscopy was employed in the same preparation to correlate these measures with secretion. Mean resting membrane potential was -74 mV and was depolarized by high external K(+) (20 mM) and the K(+) channel blockers 4-aminopyridine (4-AP), quinine, and clotrimazole. The cholinergic agonist carbachol (60-2,000 nM; EC(50) = 200 nM) caused a concentration-dependent initial hyperpolarization of the membrane and an associated decrease in input resistance. This hyperpolarization was significantly decreased by 20 mM external K(+) or membrane hyperpolarization and increased by 1 mM external K(+) or membrane depolarization. It was blocked by the K(+) channel blockers tetraethylammonium (TEA), 4-AP, quinine, and clotrimazole but not iberiotoxin. When videomicroscopy was employed to measure dilation of acinar lumen in the same preparation, carbachol-evoked dilations were altered in a parallel fashion when external K(+) was altered. The dilations were also blocked by the K(+) channel blockers TEA, 4-AP, quinine, and clotrimazole but not iberiotoxin. These findings suggest that activation of outward K(+) currents is fundamental to the initiation of secretion from these glands, consistent with the model of K(+) efflux from the basolateral membrane providing the driving force for secretion. The pharmacological profile suggests that these K(+) channels belong to the intermediate conductance group.  相似文献   

11.
A novel member of the RCK family of rat brain K+ channels, called RCK2, has been sequenced and expressed in Xenopus oocytes. The K+ currents were voltage-dependent, activated within 20 ms (at 0 mV), did not inactivate in 5 s, and had a single channel conductance in frog Ringers of 8.2 pS. Compared to other members of the RCK family the pharmacological profile of RCK2 was unique in that the channel was resistant to block (IC50 = 3.3 microM) by charybdotoxin [(1988) Proc. Natl. Acad. Sci. USA 85, 3329-3333] but relatively sensitive to 4-aminopyridine (0.3 mM), tetraethylammonium (1.7 mM), alpha-dendrotoxin (25 nM), noxiustoxin (200 nM), and mast cell degranulating peptide (200 nM). Thus, RCK2 is a non-inactivating delayed rectifier K+ channel with interesting pharmacological properties.  相似文献   

12.
Secretion of enzymes and fluid induced by Ca(2+) in pancreatic acini is not completely understood and may involve activation of ion conductive pathways in zymogen granule (ZG) membranes. We hypothesized that a chromanol 293B-sensitive K(+) conductance carried by a KCNQ1 protein is expressed in ZG membranes (ZGM). In suspensions of rat pancreatic ZG, ion flux was determined by ionophore-induced osmotic lysis of ZG suspended in isotonic salts. The KCNQ1 blocker 293B selectively blocked K(+) permeability (IC(50) of approximately 10 microM). After incorporation of ZGM into planar bilayer membranes, cation channels were detected in 645/150 mM potassium gluconate cis/trans solutions. Channels had linear current-voltage relationships, a reversal potential (E(rev)) of -20.9 +/- 0.9 mV, and a single-channel K(+) conductance (g(K)) of 265.8 +/- 44.0 pS (n = 39). Replacement of cis 500 mM K(+) by 500 mM Na(+) shifted E(rev) to -2.4 +/- 3.6 mV (n = 3), indicating K(+) selectivity. Single-channel analysis identified several K(+) channel groups with distinct channel behaviors. K(+) channels with a g(K) of 651.8 +/- 88.0 pS, E(rev) of -22.9 +/- 2.2 mV, and open probability (P(open)) of 0.43 +/- 0.06 at 0 mV (n = 6) and channels with a g(K) of 155.0 +/- 11.4 pS, E(rev) of -18.3 +/- 1.8 mV, and P(open) of 0.80 +/- 0.03 at 0 mV (n = 3) were inhibited by 100 microM 293B or by the more selective inhibitor HMR-1556 but not by the maxi-Ca(2+)-activated K(+) channel (BK channel) inhibitor charybdotoxin (5 nM). KCNQ1 protein was demonstrated by immunoperoxidase labeling of pancreatic tissue, immunogold labeling of ZG, and immunoblotting of ZGM. 293B also inhibited cholecystokinin-induced amylase secretion of permeabilized acini (IC(50) of approximately 10 microM). Thus KCNQ1 may account for ZG K(+) conductance and contribute to pancreatic hormone-stimulated enzyme and fluid secretion.  相似文献   

13.
Injection of 0.2 ng of cRNA encoding the brain Kv1.2 channel into Xenopus oocytes leads to the expression of a very slowly inactivating K+ current. Inactivation is absent in oocytes injected with 20 ng of cRNA although activation remains unchanged. Low cRNA concentrations generate a channel which is sensitive to dendrotoxin I (IC50 = 2 nM at 0.2 ng of cRNA/oocyte) and to less potent analogs of this toxin from Dendroaspis polylepis venom. A good correlation is found between blockade of the K+ current and binding of the different toxins to rat brain membranes. High cRNA concentrations generate another form of the K+ channel which is largely insensitive to dendrotoxin I (IC50 = 200 nM at 20 ng of cRNA per oocyte). At low cRNA concentrations, the expressed Kv1.2 channel is also blocked by other polypeptide toxins such as MCD peptide (IC50 = 20 nM), charybdotoxin (IC50 = 50 nM), and beta-bungarotoxin (IC50 = 50 nM), which bind to distinct and allosterically related sites on the channel protein. The pharmacologically distinct type of K+ channel expressed at high cRNA concentrations (20 ng of cRNA/oocyte) is nearly totally resistant to 100 nM MCD peptide and hardly altered by charybdotoxin and beta-bungarotoxin at concentrations as high as 1 microM. Both at low and at high cRNA concentrations, the expressed Kv1.2 channel is blocked by an increase in intracellular Ca2+ from the inositol trisphosphate sensitive pools and by the phorbol ester PMA that activates protein kinase C.  相似文献   

14.
In cardiac cells that lack macroscopic transient outward K(+) currents (I(to)), the removal of extracellular Ca(2+) can unmask "I(to)-like" currents. With the use of pig ventricular myocytes and the whole cell patch-clamp technique, we examined the possibility that cation efflux via L-type Ca(2+) channels underlies these currents. Removal of extracellular Ca(2+) and extracellular Mg(2+) induced time-independent currents at all potentials and time-dependent currents at potentials greater than -50 mV. Either K(+) or Cs(+) could carry the time-dependent currents, with reversal potential of +8 mV with internal K(+) and +34 mV with Cs(+). Activation and inactivation were voltage dependent [Boltzmann distributions with potential of half-maximal value (V(1/2)) = -24 mV and slope = -9 mV for activation; V(1/2) = -58 mV and slope = 13 mV for inactivation]. The time-dependent currents were resistant to 4-aminopyridine and to DIDS but blocked by nifedipine at high concentrations (IC(50) = 2 microM) as well as by verapamil and diltiazem. They could be increased by BAY K-8644 or by isoproterenol. We conclude that the I(to)-like currents are due to monovalent cation flow through L-type Ca(2+) channels, which in pig myocytes show low sensitivity to nifedipine.  相似文献   

15.
We established HEK-293 cell lines that stably express functional canine ether-à-go-go-related gene (cERG) K(+) channels and examined their biophysical and pharmacological properties with whole cell patch clamp and (35)S-labeled MK-499 ([(35)S]MK-499) binding displacement. Functionally, cERG current had the hallmarks of cardiac delayed rectifier K(+) current (I(Kr)). Channel opening was time- and voltage dependent with threshold near -40 mV. The half-maximum activation voltage was -7.8 +/- 2.4 mV at 23 degrees C, shifting to -31.9 +/- 1.2 mV at 36 degrees C. Channels activated with a time constant of 13 +/- 1 ms at +20 mV, showed prominent inward rectification at depolarized potentials, were highly K(+) selective (Na(+)-to-K(+) permeability ratio = 0.007), and were potently inhibited by I(Kr) blockers. Astemizole, terfenadine, cisapride, and MK-499 inhibited cERG and human ERG (hERG) currents with IC(50) values of 1.3, 13, 19, and 15 nM and 1.2, 9, 14, and 21 nM, respectively, and competitively displaced [(35)S]MK-499 binding from cERG and hERG with IC(50) values of 0.4, 12, 35, and 0.6 nM and 0.8, 5, 47, and 0.7 nM, respectively. cERG channels had biophysical properties appropriate for canine action potential repolarization and were pharmacologically sensitive to agents known to prolong QT. A novel MK-499 binding assay provides a new tool to detect agents affecting ERG channels.  相似文献   

16.
Pharmacological inhibition of human-ether-a-go-go-related gene (HERG) K(+) channels by structurally and therapeutically diverse drugs is associated with the 'acquired' form of long QT syndrome and with potentially lethal cardiac arrhythmias. Two aromatic amino-acid residues (Y652 and F656) on the inner (S6) helices are considered to be key constituents of a high affinity drug binding site within the HERG channel pore cavity. Using wild-type (WT) and mutant HERG channels expressed in mammalian cell lines, we have investigated HERG channel current (I(HERG)) blockade at 37+/-1 degrees C by dronedarone (DRONED), a non-iodinated analogue of the Class III antiarrhythmic agent amiodarone (AMIOD). Under our conditions WT I(HERG) tails, measured at -40 mV following activating pulses to +30 mV, were blocked with IC(50) values of approximately 59 and 70 nM for DRONED and AMIOD, respectively. I(HERG) inhibition by DRONED was contingent upon channel gating, with block developing rapidly on membrane depolarization, but with no preference for activated over inactivated channels. High external [K(+)] (94 mM) reduced the potency of I(HERG) inhibition by both DRONED and AMIOD. Strikingly, mutagenesis to alanine of the S6 residue F656 (F656A) failed to eliminate blockade by both DRONED and AMIOD, whilst Y652A had comparatively little effect on DRONED but some effect on AMIOD. These findings demonstrate that high affinity drug blockade of I(HERG) can occur without a strong dependence on the Y652 and F656 aromatic amino-acid residues.  相似文献   

17.
Calcium currents in embryonic and neonatal mammalian skeletal muscle   总被引:24,自引:5,他引:19       下载免费PDF全文
The whole-cell patch-clamp technique was used to study the properties of inward ionic currents found in primary cultures of rat and mouse skeletal myotubes and in freshly dissociated fibers of the flexor digitorum brevis muscle of rats. In each of these cell types, test depolarizations from the holding potential (-80 or -90 mV) elicited three distinct inward currents: a sodium current (INa) and two calcium currents. INa was the dominant inward current: under physiological conditions, the maximum inward INa was estimated to be at least 30-fold larger than either of the calcium currents. The two calcium currents have been termed Ifast and Islow, corresponding to their relative rates of activation. Ifast was activated by test depolarizations to around -40 mV and above, peaked in 10-20 ms, and decayed to baseline in 50-100 ms. Islow was activated by depolarizations to approximately 0 mV and above, peaked in 50-150 ms, and decayed little during a 200-ms test pulse. Ifast was inactivated by brief, moderate depolarizations; for a 1-s change in holding potential, half-inactivation occurred at -55 to -45 mV and complete inactivation occurred at -40 to -30 mV. Similar changes in holding potential had no effect on Islow. Islow was, however, inactivated by brief, strong depolarizations (e.g., 0 mV for 2 s) or maintained, moderate depolarizations (e.g., -40 mV for 60 s). Substitution of barium for calcium had little effect on the magnitude or time course of either Ifast or Islow. The same substitution shifted the activation curve for Islow approximately 10 mV in the hyperpolarizing direction without affecting the activation of Ifast. At low concentrations (50 microM), cadmium preferentially blocked Islow compared with Ifast, while at high concentrations (1 mM), it blocked both Ifast and Islow completely. The dihydropyridine calcium channel antagonist (+)-PN 200-110 (1 microM) caused a nearly complete block of Islow without affecting Ifast. At a holding potential of -80 mV, the half-maximal blocking concentration (K0.5) for the block of Islow by (+)-PN 200-110 was 182 nM. At depolarized holding potentials that inactivated Islow by 35-65%, K0.5 decreased to 5.5 nM.  相似文献   

18.
The human ether-a-go-go-related gene (HERG) product forms the pore-forming subunit of the delayed rectifier K(+) channel in the heart. Unlike the cardiac isoform, the erg K(+) channels in native smooth muscle demonstrate gating properties consistent with a role in maintaining resting potential. We have cloned the smooth muscle isoform of HERG, denoted as erg1-sm, from human and rabbit colon. erg1-sm is truncated by 101 amino acids in the C terminus due to a single nucleotide deletion in the 14th exon. Sequence alignment against HERG showed a substitution of alanine for valine in the S4 domain. When expressed in Xenopus oocytes, erg1-sm currents had much faster activation and deactivation kinetics compared with HERG. Step depolarization positive to -20 mV consistently produced a transient outward component. The threshold for activation of erg1-sm was -60 mV and steady-state conductance was approximately 10-fold greater than HERG near the resting potential of smooth muscle. Site-directed mutagenesis of alanine to valine in the S4 region of erg1-sm converted many of the properties to that of the cardiac HERG, including shifts in the voltage dependence of activation and slowing of deactivation. These studies define the functional role of a novel isoform of the ether-a-go-go-related gene K(+) channel in smooth muscle.  相似文献   

19.
We have used hamster insulinoma tumor (HIT) cells, an insulin-secreting tumor cell line, to investigate modulation of the Na/K-ATPase and of the ATP-sensitive K channel (K(ATP)) by the sulfonylurea glyburide. Membrane proteins from cells cultured in RPMI with 11 mM glucose have at least two glyburide receptor populations, as evidenced by high and low binding affinity constants, (K(d) = 0.96 and 91 nM, respectively). In these cells K(ATP) channel activity was blocked by low glyburide concentrations, IC(50) = 5.4 nM. At 12.5 nM glyburide the inhibition developed slowly, tau = 380 s, and caused reduction of channel activity by 75 percent. At higher concentrations, however, inhibition occurred at a fast rate, tau = 42 s at 100 nM, and was almost complete. Na/K- ATPase activity measured enzymatically and electrophysiologically was also suppressed by glyburide, but higher concentrations were needed, IC(50) = 20-40 nM. Inhibition occurred rapidly, tau = 30 s at 50 nM, when maximum, activity was reduced by 40 percent. By contrast, cells cultured in RPMI supplemented with 25 mM glucose exhibit a single receptor population binding glyburide with low affinity, K(d)= 68 nM. In these cells inhibition of the Na/K-ATPase by the sulfonylurea was similar to that observed in cells cultured in 11 mM glucose, but K(ATP) channel inhibition was markedly altered. Inhibition occurred only at high concentrations of glyburide and at a fast rate; maximum inhibition was observed at 100 nM. Based on these data, we propose that glyburide binding to the high affinity site affects primarily K(ATP) channel activity, while interaction with the low affinity site inhibits both Na/K-ATPase and K(ATP) channel activities. The latter observation suggests possible functional interactions between the Na/K-ATPase and the K(ATP) channel.  相似文献   

20.
Effects of Na+,K(+)-ATPase inhibitor: marinobufagenin, on contractile and electric characteristics of isolated rat diaphragm were studied for the first time. Marinobufagenin induced dose-dependent (EC50 = 0.3 +/- 0.1 nM) increase in the contraction force (positive inotropic effect). At 1-2 nM, it slowed down the fatigue induced by continuous direct stimulation (2/s) of the muscle. Marinobufagenin at the same concentrations did not affect resting membrane potential or parameters of action potentials of muscle fibers, while at 10 and 20 nM it induced hyperpolarization by approximately 2 mV. Marinobufagenin blocked dose-dependently (IC50 = 2.9 +/- 2.0 nM) hyperpolarizing effect of acetylcholine (100 nM) mediated by increase in electrogenic contribution of alpha2 isoform of the Na+,K(+)-ATPase. This result suggests a capability of marinobufagenin to inhibit this isoform of the Na+,K(+)-ATPase. Possible mechanisms of marinobufagenin effects in skeletal muscle are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号