首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pseudo EcoRI site GAATTA in the U3 region of the long terminal repeat of human immunodeficiency virus, which is flanked by a 26-base pair oligopurine tract, is readily nicked by either EcoRI or RsrI. The strand-specific nick occurs predominantly between the G and A residues and is independent of negative supercoiling. Other GAATTA sites surrounded by random (non-oligopurine) sequences are not nicked by these restriction endonucleases. However, other types and lengths of oligopurine tracts are effective in inducing the nicking in neighboring GAATTA sites. Hence, we propose that the flanking oligopurine tracts induce an altered DNA conformation on the GAATTA target site which may be similar to the transition state induced by EcoRI when binding to its canonical recognition site. Gel retardation analyses on restriction fragments containing the oligopurine-GAATTA-oligopurine sequences suggest the presence of helical axis distortions which are consistent with this interpretation.  相似文献   

2.
P Bucher  G Yagil 《DNA sequence》1991,1(3):157-172
A program to analyse the length and frequency distribution of specific base tracts in genomic sequences is described. The frequency of oligopurine.oligopyrimidine tracts (R.Y. tracts) in a data base of 163 transcribed genes is analysed and compared. The complete genomes of SV40 virus, N. tobacum chloroplast, yeast 2 micron plasmid, bacteriophage lambda, plasmid pBR322 and the E. coli lac operon are also analyzed. A highly significant overrepresentation of oligopurine and oligopyrimidine tracts is observed in all eukaryotic genes examined, as well as in the chloroplast genome. The overrepresentation is evident in all gene subregions of the chloroplast, in the following order: intergenic regions, 3' downstream and 5' upstream (promoter), 5' and 3' untranslated, introns and coding regions. In genes coding for basic proteins, oligopurine rather than oligopyrimidine tracts are found on the coding stand. In prokaryotic genes only the longest R.Y. tracts (greater than or equal to 12) are found in excess, and are concentrated near regulatory regions. While a structural role for R.Y. tracts is most likely in intergenic regions, a functional role, as initiation sites for strand separation, is proposed for regulatory gene regions.  相似文献   

3.
M Lu  N Zhang  S Raimondi    A D Ho 《Nucleic acids research》1992,20(2):263-266
Recurring chromosomal translocations are frequently seen in cancers, especially in leukemias and lymphomas. The genes affected by these chromosomal translocations appear to play an important role in oncogenesis. The mechanism underlying the formation of chromosomal translocation is a subject under extensive study. In chromosomal translocations involving the Ig and TCR loci, complete heptamer-spacer-nonamer signal motifs are usually present at the break of the Ig and TCR genes, indicating the involvement of V-D-J recombinase(s). On the other hand, in only about 50% of the cases signal motif sequences have been found at the break in the other participating chromosome, suggesting that different mechanisms may be involved in the scission of the corresponding chromosome. Here we report the identification of an oligopurine/oligopyrimidine DNA in the t(10;14) breakpoint cluster region associated with T-cell acute lymphoblastic leukemia. S1 nuclease mapping revealed multiple S1 hypersensitive sites in the oligopurine/oligopyrimidine DNA. These data suggest a role for oligopurine/oligopyrimidine sequences (non-B DNA) in the formation of chromosomal translocation.  相似文献   

4.
Triple helix formation requires a polypurine- polypyrimidine sequence in the target DNA. Recent works have shown that this constraint can be circumvented by using alternate strand triplex-forming oligonucleotides. We have previously demonstrated that (T,G)-containing triplex- forming oligonucleotides may adopt a parallel or an antiparallel orientation with respect to an oligopurine target, depending upon the sequence and, in particular, upon the number of 5'-GpT-3' and 5'-TpG-3' steps [Sun et al. (1991) C.R. Acad. Sci. Paris Ser III, 313, 585-590]. A single (T,G)-containing oligonucleotide can therefore interact with two oligopurine stretches which alternate on the two strands of the target DNA. The (T,G) switch oligonucleotide contains a 5'-part targeted to one of the oligopurine sequences in a parallel orientation followed by a 3'-part that adopts an antiparallel orientation with respect to the second oligopurine sequence. We show that a limitation to the stability of such a triplex may arise from the instability of the antiparallel part, composed of reverse-Hoogsteen C.GxG and T.AxT base triplets. Using DNase I footprinting and ultraviolet absorption experiments, we report that a benzo[e]pyridoindole derivative [(3-methoxy- 7H-8-methyl-11-[(3'-amino-propyl) amino] benzo[e]pyrido [4,3-b]indole (BePI)], a drug interacting more tightly with a triplex than with a duplex DNA, strongly stabilizes triplexes with reverse-Hoogsteen C.GxG and T.AxT triplets thus allowing a stabilization of the triplex-forming switch (T,G) oligonucleotide on alternating oligopurine- oligopyrimidine 5'-(Pu)14(Py)14-3' duplex sequences. These results lead to an extension of the range of oligonucleotide sequences for alternate strand recognition of duplex DNA.  相似文献   

5.
To study possible involvement of polypurine and polypyrimidine DNA tracts capable of forming triple-stranded structures (the H-form of DNA) in compaction of eukaryotic chromosomes, an in silico search for complementary polypurine and polypyrimidine sequences was carried out within 12 eukaryotic genes. It was shown that, in chromosomal gene loci, 10–11 bp polypurine and polypyrimidine tracts potentially capable of interacting with each other with the formation of triplex structures (“structuring” regions) are located in predominantly in introns and gene-flanking regions. In vivo, such DNA-DNA interactions can result in the chromosomal gene domain folding into several small loops. The character of the DNA triplex-mediated compaction of chromosomal gene loci may be related to gene functioning. A similar analysis of long (LINE) and short (SINE) interspersed repeat sequences, as well as of satellite DNA, showed essential resemblance between the compaction mechanisms of coding and noncoding chromosome regions.  相似文献   

6.
We have used DNase I footprinting to examine the formation of intermolecular triplexes on DNA fragments which have been complexed with nucleosome core particles. We have prepared five DNA fragments, based on the 160-bp tyrT sequence, which contain different length oligopurine tracts (up to 25 bp) at two different positions along the fragment, and have examined their availability for triple-helix formation after reconstituting onto nucleosome core particles. These results are compared with the formation of shorter triplexes in the same regions. In general we find that increasing the length of the complex does not facilitate nucleosomal triplex formation and that the most important factor affecting triplex formation is the position of the target site within the nucleosome-bound fragment. In some instances we find that longer oligonucleotides inhibit triplex formation. Although successful triplex formation was achieved on the longest nucleosome-bound oligopurine tracts, this was accompanied by changes in cleavage pattern that suggest oligonucleotide-induced changes in nucleosome structure.  相似文献   

7.
Triple-helical DNA shows increasing potential for applications in the control of gene expression (including therapeutics) and the development of sequence-specific DNA-cleaving agents. The major limitation in this technology has been the requirement of homopurine sequences for triplex formation. We describe a simple approach that relaxes this requirement, by utilizing both Pu.PuPy and Py.PuPy base triplets to form a continuous DNA triple helix at tandem oligopurine and oligopyrimidine tracts. [Triplex formation at such a sequence has been previously demonstrated only with the use of a special 3'-3' linkage in the third strand [Horne, D. A., & Dervan, P. B. (1990) J. Am. Chem. Soc. 112, 2435-2437].] Supporting evidence is from chemical probing experiments performed on several oligonucleotides designed to form 3-stranded fold-back structures. The third strand, consisting of both purine and pyrimidine blocks, pairs with purines in the Watson-Crick duplex, switching strands at the junction between the oligopurine and oligopyrimidine blocks but maintaining the required strand polarity without any special linkage. Although Mg2+ ions are not required for the formation of Pu.PuPy base triplets, they show enhanced stability in the presence of Mg2+. In the sequences observed. A.AT triplets appear to be more stable than G.GC triplets. As expected, triplex formation is largely independent of pH unless C+.GC base triplets are required.  相似文献   

8.
A significant limitation to the practical application of triplex DNA is its requirement for oligopurine tracts in target DNA sequences. The repertoire of triplex-forming sequences can potentially be expanded to adjacent blocks of purines and pyrimidines by allowing the third strand to pair with purines on alternate strands, while maintaining the required strand polarities by combining the two major classes of base triplets, Py.PuPy and Pu.PuPy. The formation of triplex DNA in this fashion requires no unusual bases or backbone linkages on the third strand. This approach has previously been demonstrated for target sequences of the type 5'-(Pu)n(Py)n-3' in intramolecular complexes. Using affinity cleaving and DNase I footprinting, we show here that intermolecular triplexes can also be formed at both 5'-(Pu)n(Py)n-3' and 5'-(Py)n(Pu)n-3' target sequences. However, triplex formation at a 5'-(Py)n(Pu)n-3' sequence occurs with lower yield. Triplex formation is disfavored, even at acid pH, when a number of contiguous C+.GC base triplets are required. These results suggest that triplex formation via alternate strand recognition at sequences made up of blocks of purines and pyrimidines may be generally feasible.  相似文献   

9.
When the 4-bp Dam recognition sequence was placed between two d(GA)7 tracts, it became severely undermethylated in JM101Escherichia coli cells compared to other Dam sequences in the same plasmid DNA. This site specific undermethylation was also detected on supercoiled moleculesin vitro. Mutational analysis indicated that undermethylation is related to the capacity of the oligopurine tract to adopt the H-DNA conformation. In addition, chemical probing of the cells was consistent with a cellular protein bound to the DNA. Therefore it is likely that the combination of altered DNA conformation and a cellular protein leads to Dam-site protection. We also found that the site-specific undermethylation is detectable in certainE. coli strains only.  相似文献   

10.
11.
Gal M  Katz T  Ovadia A  Yagil G 《Nucleic acids research》2003,31(13):3682-3685
A program to map the locations and frequencies of DNA tracts composed of only two bases ('Binary DNA') is described. The program, TRACTS (URL http://bioportal.weizmann.ac.il/tracts/tracts.html and/or http://bip.weizmann.ac.il/miwbin/servers/tracts) is of interest because long tracts composed of only two bases are highly over-represented in most genomes. In eukaryotes, oligopurine.oligopyrimidine tracts ('R.Y tracts') are found in the highest excess. In prokaryotes, W tracts predominate (A,T 'rich'). A pre-program, ANEX, parses database annotation files of GenBank and EMBL, to produce a convenient one-line list of every gene (exon, intron) in a genome. The main unit lists and analyzes tracts of the three possible binary pairs (R.Y, K.M and S;W). As an example, the results of R.Y tract mapping of mammalian gene p53 is described.  相似文献   

12.
Oligonucleotide-directed triple helix formation is mostly restricted to oligopyrimidine*oligopurine sequences of double helical DNA. An interruption of one or two pyrimidines in the oligopurine target strand leads to a strong triplex destabilisation. We have investigated the effect of nucleotide analogues introduced in the third strand at the site opposite the base pair inversion(s). We show that a 3-nitropyrrole derivative (M) discriminates G*C from C*G, A*T and T*A in the presence of a triplex-specific ligand (a benzo[e]pyridoindole derivative, BePI). N6-methoxy-2,6-diaminopurine (K) binds to an A*T base pair better than a T*A, G*C or C*G base pair. Some discrimination is still observed in the presence of BePI and triplex stability is markedly increased. These findings should help in designing BePI-oligonucleotide conjugates to extend the range of DNA sequences available for triplex formation.  相似文献   

13.
Recent studies of homooligomer tracts suggest different characteristics from random sequence DNA (dA).(dT) and (dG).(dC) tracts are frequent in upstream regions and in some cases have been shown to be essential for regulation. Here we examine homooligomer occurrences in non-coding and coding eukaryotic sequences, focusing on the context in which the homooligomers occur. This analysis of sequences in the junction areas yields distinct and consistent characteristics. In particular, the nucleotide interrupting a run is most frequently complementary to the run. The base next to it is most frequently identical to the one constituting the run. For A or T runs the least frequent nearest and next to nearest neighbors are G or C. For G or C tracts the least frequent are A or T. Complementary oligomers behave similarly. These and additional trends are strongest for run lengths greater than or equal to 3. The computations are carried out on the whole eukaryotic database of greater than 4 x 10(6) nucleotides, separately for coding and non-coding regions. These same trends are evident for both groups, but are somewhat stronger for the non-coding regions. The context in which the homooligomers occur may yield some clues to DNA conformation and its biological implications.  相似文献   

14.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

15.
The distributions of the junction sequences of homooligomer tracts of various lengths have been examined in prokaryotic DNA sequences and compared with those of eukaryotes. The general trends in the nearest and next to nearest neighbors to the tracts are similar for both groups. In both prokaryotes and eukaryotes A/T runs are preferentially flanked on either the 5' or the 3' ends by A and/or T. G/C runs are preferentially flanked by G and/or C. There is discrimination against A/T runs flanked by G or C and G/C runs flanked by A or T. However, whereas the distribution of prokaryotic homooligomer tract junction sequences was quite homogeneous, large variations were observed in the 5-fold larger eukaryotic database, increasing in magnitude from tracts of length 2 to 3 to 4 base pairs long. Possible DNA conformational implications and in particular DNA curvature and packaging aspects of prokaryotes and eukaryotes are discussed.  相似文献   

16.
Salzberg AA  Dedon PC 《Biochemistry》2000,39(25):7605-7612
Calicheamicin is a hydrophobic enediyne antibiotic that binds noncovalently to DNA and causes sequence-selective oxidation of deoxyribose. While the drug makes several base contacts along the minor groove, the diversity of binding-site sequences and the effects of DNA conformation on calicheamicin-induced DNA cleavage suggest that sequence recognition per se is not the primary determinant of target selection. We now present evidence that calicheamicin bends its DNA targets. Using a gel mobility assay, we observed that polymers of oligonucleotide constructs containing AGGA and ACAA binding sites for calicheamicin did not possess intrinsic curvature. Binding of calicheamicin epsilon, the aromatized form of the parent calicheamicin gamma(1)(I), to oligonucleotide constructs containing binding sites in phase with the helical repeat caused a shift to smaller circle sizes in T4 ligase-mediated circle formation assays, with a much smaller shift observed with constructs containing out-of-phase binding sites. It was also observed that binding of calicheamicin epsilon to a 273 bp construct with phased binding sites caused an increase in the molar cyclization factor, J, from 8 x 10(-8) to 9 x 10(-6) M. These results are consistent with DNA bending as part of an induced-fit mechanism of DNA target recognition and with the hypothesis that the preferred targets of calicheamicin, the 3' ends of oligopurine tracts, are characterized by unique conformational properties.  相似文献   

17.
In this paper, we describe the synthesis of the 3'-3'-linked oligonucleotides connected with pentaerythritol composed of asymmetrical sequences. Stability of the triplexes between these oligonucleotides and the DNA targets involving the adjacent oligopurine domains on alternate strands was investigated using the electrophoretic mobility shift assay (EMSA) and DNase I footprinting experiment. It was found that the 3'-3'-linked oligonucleotides composed of asymmetrical sequences formed the stable antiparallel triplexes with the DNA targets as compared with the unlinked oligonucleotides. Thus, oligonucleotides linked with pentaerythritol would be useful as antigene oligonucleotides for DNA targets consisting of the alternating oligopyrimidine-oligopurine sequences.  相似文献   

18.
M J Behe  A M Beasty 《DNA sequence》1991,1(5):291-302
Large variations in DNA base composition and noticeable strand asymmetries are known to occur between different organisms and within different regions of the genomes of single organisms. Apparently such composition and sequence biases occur to fulfill structural rather than informational requirements. Here we report the wide occurrence of a more subtle biasing of DNA sequence that can have structural consequences: an increase or a suppression of the number of long tracts of two-base co-polymers. Strong biases were observed when the DNA sequences of the longest eukaryotic, prokaryotic, and organellar entries in the GenBank data base (totaling 773 kilobases) were analyzed for the number of occurrences of tracts of the two-base co-polymers (A,T)n, (G,C)n, and (A,C)n as a function of tract length. (The expression (A,T)n is used here to denote an uninterrupted tract, n nucleotides in length, of A and T bases in any proportion or order, terminated at each end by a G or C residue.) Characteristic differences are also observed in tract biases of eukaryotic vs. prokaryotic organisms.  相似文献   

19.
We have demonstrated that the DNA sequence between two triplex-forming polypurine.polypyrimidine (Pu.Py) tracts was protected from DNA modifying enzymes upon formation of triplex DNA structures with an oligodeoxyribonucleotide in which two triplex-forming Pu or Py tracts were placed at the termini (triplex-bridge formation). In model experiments, when two triplex structures were formed between double-stranded DNA with the sequence (AG)17-(N)18-(T)34, and an oligodeoxyribonucleotide, (T)34-(N)18-(GA)17, not only the Pu.Py tracts but also the 18 bp non-Pu.Py sequence in the duplex DNA between the tracts was protected from restriction enzymes, HpaII methylase and DNase I. This protection occurred only when both of the Pu.Py tracts were involved as triplexes. The length of the tracts could be as short as 21 bp, while the difference in length between the non-Pu.Py sequences on the duplex and the oligodeoxyribonucleotide should be within 10 nucleotides. The efficiency of protection was enhanced in the presence of a cationic detergent, cetyltrimethylammonium bromide, during triplex formation. Protection was also observed with another type of the triplex bridge formed between (G)34 and (T)34 tracts with an oligodeoxyribonucleotide, (T)34-(N)20-(G)34. These findings suggest that the protection of specific DNA sequences from enzymes by triplex-bridge formation can be applied to any DNA sequence by placing it between two triplex-forming sequences.  相似文献   

20.
An oligopurine sequence bias occurs in eukaryotic viruses.   总被引:10,自引:6,他引:4  
Twenty four DNA and RNA viral nucleotide sequences, comprising over 346 kilobases, have been analyzed for the occurrence of strings of contiguous purine or pyrimidine residues. On average strings greater than or equal to 10 contiguous purines or pyrimidines are found three and a half times more frequently than would be expected for a random distribution of bases. Detailed analysis of the 172 kilobase Epstein-Barr viral sequence shows that the bias in favor of contiguous purine residues increases with the length of the purine string. These findings are similar to those seen for genomic DNA from higher eukaryotes. In contrast no overrepresentation of oligopurine or oligopyrimidine strings is observed in 52 kilobases from eight bacteriophage and E. coli DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号