首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Abscission: role of cellulase   总被引:5,自引:25,他引:5       下载免费PDF全文
Abeles FB 《Plant physiology》1969,44(3):447-452
Cellulase (β-1,4-glucan-glucanohydrolase EC 3.2.1.4) activity increased during abscission and was localized in the cell separation layer of Phaseolus vulgaris L. cv. Red Kidney (bean), Gossypium hirsutum L. cv. Acala 4-42 (Cotton) and Coleus blumei Benth. Princeton strain (Coleus) abscission zone explants. Cellulase activity was optimum at pH 7, was reduced by one-half after heating to 55° for 10 min, and was associated with the soluble components of the cell. Explants treated with aging retardants (indoleacetic acid, 6N-benzyladenine, and coumarin), CO2, actinomycin D or cycloheximide had less cellulase activity than untreated controls. Ethylene increased cellulase activity of aged explants after a 3-hr lag period but had no effect on cellulase activity of freshly excised explants. It was concluded that 1 of the roles of ethylene in abscission is to regulate the production of cellulase which in turn is required for cell separation.  相似文献   

2.
The investigations carried out to find the role of abscisic acid in the phenomena of abscission of flower buds and bolls of cotton (Gossypium hirsutum L. cv. ‘H-14’) have shown abscisic acid content to be low in retained bolls as compared to that in the abscising ones of the same age, suggesting that relatively higher endogenous abscisic acid content to be promotive of abscission. Abscisic acid applied exogenously either to intact flower buds/bolls or boll explants promoted their abscission. Naphthalene acetic acid not only reduced abscission but also could erase completely the promotive effect of abscisic acid on abscission. Gibberellic acid promoted abscission in intact buds and boll explants but applied to intact bolls it reduced their shedding even more than naphthalene acetic acid. Gibberellic acid could also counteract the promotive effect of abscisic acid in the case of intact bolls but enhanced that of boll explants. All the cytokinin-furfurylamino-purine treatments given other than at the abscission zone promoted abscission. Furfurylaminopurine applied in combination with abscisic acid showed some antagonistic effect in the case of intact bolls and boll explants abscission zone treatments. Ascorbic acid applied at a relatively lower dose (0.025 mM) reduced shedding but applied at a higher dose it showed promotion. Ascorbic acid could erase the promotive effect of abscisic acid on abscission to a significant extent.  相似文献   

3.
At maturity, the fruit of two early maturing orange cultivars, Hamlin and Pineapple (Citrus sinensis [L.] Osbeck), contained more ethylene and abscisic acid than the late maturing Valencia and Lamb Summer (C. sinensis [L.] Osbeck) cultivars. Ethylene (up to 95 nl/l in internal atmosphere) and abscisic (50 μg/kg dry weight flavedo) increased most rapidly in Pineapple, leading to increased cellulase activity and loosening of the fruit. Fruit of the two late maturing cultivars contained less than 25 nl/1 ethylene and 40 μg abscisic acid/kg dry weight of flavedo at peak maturity. Cellulase activity and loosening of the fruit of these late maturing cultivars was slight.  相似文献   

4.
The in vitro regeneration of flower buds was studied in pedicel explants from tobacco (Nicotiana tabacum L., cv Petit Havana) transformed with Agrobacterium rhizogenes, pRi 1855 (agropine type). At a low concentration (0.1 micromolar) of 1-naphthalene-acetic acid, pedicel strips from phenotypically aberrant plants regenerated two to three times more flower buds than explants from untransformed tobacco. Intermediate bud numbers were observed in transformants with a less extreme phenotype. The results can be explained by an increased sensitivity of the transformed explants to auxin with respect to flower bud regeneration. The effect of transformation on the auxin response is fully accounted for by the absence of a negative interaction of endogenous ethylene with 1-naphthaleneacetic acid, a phenomenon normally encountered in untransformed tissues. Three observations led to this conclusion. Application of 1 micromolar AgNO3 to untransformed explants increased the number of flower buds to the level observed in transformed tissues but had no effect on transformed pedicel strips; exposure to 10 microliters per liter ethylene strongly reduced the response to auxin at all concentrations in untransformed explants but was almost ineffective in the transformed tissues; and endogenous ethylene synthesis occurred at the same rate in both types of explants.  相似文献   

5.
The enzymatic conversion of xanthoxin to abscisic acid by cell-free extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was present in cell-free leaf extracts from both wild type and the abscisic acid-deficient molybdopterin cofactor mutant, Az34 (nar2a) of Hordeum vulgare L. However, the enzyme activity catalyzing the synthesis of abscisic acid from abscisic aldehyde (abscisic aldehyde oxidase) was present only in extracts of the wild type and no activity could be detected in either turgid or water stressed leaf extracts of the Az34 mutant. Furthermore, the wilty tomato mutants, sitiens and flacca, which do not accumulate abscisic acid in response to water stress, have been shown to lack abscisic aldehyde oxidase activity. When this enzyme fraction was isolated from leaf extracts of P. vulgaris L. and added to extracts prepared from sitiens and flacca, xanthoxin was converted to abscisic acid. Abscisic aldehyde oxidase has been purified about 145-fold from P. vulgaris L. leaves. It exhibited optimum catalytic activity at pH 7.25 in potassium phosphate buffer.  相似文献   

6.
Pear fruit cells (Pyrus communis L. cv Passe Crassane) stopped dividing when subcultured in a bioreactor under auxin starvation in the presence of 0.37 molar mannitol. The cessation of cell division was preceded by the accumulation of a specific basic polypeptide of 24 kilodalton. Readdition of 2.3 micromolar 2,4-dichlorophenoxyacetic acid (2,4-D) neither caused a resumption of cell division nor depressed the accumulation of this polypeptide. Under complete auxin starvation, cells began to die at day 18. In vivo radioactive labeling of proteins followed by two-dimensional electrophoresis showed that during auxin starvation the synthesis of some polypeptides including the 24 kilodalton one (referred to as homeostasis-related proteins, HRPs) was decreased while the synthesis of some others (referred as senescence-related proteins, SRPs) was increased. Readdition of 2.3 micromolar 2,4-D postponed the onset of cell death by 10 to 15 days while supplementation with 7.6 micromolar abscisic acid advanced cell death by 8 days. Two-dimensional analysis of protein synthesis indicated that both hormones interact on the synthesis of these two groups of polypeptides. The levels of most HRPs were maintained or increased in the presence of auxin, while the levels of the SRPs were decreased by auxin and increased by abscisic acid. Short and long-term effects of 2,4-D and abscisic acid on the synthesis of specific polypeptides were observed, allowing a discrimination between the direct and indirect effect of both hormones on the development of cell senescence.  相似文献   

7.
8.
Substrate induction of nitrate reductase in barley aleurone layers   总被引:5,自引:5,他引:5       下载免费PDF全文
Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of α-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce α-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of α-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.  相似文献   

9.
Sagee O  Goren R  Riov J 《Plant physiology》1980,66(4):750-753
The question whether abscisic acid (ABA) induces cellulase and polygalacturonase activity and, hence, abscission directly or whether its action is mediated by C2H4 was studied in citrus (Osbeck var. Shamouti) leaf explants using aminoethoxyvinyl glycine (AVG), an inhibitor of C2H4 biosynthesis. ABA in concentrations of 10 micromolar and higher induced C2H4 production and accelerated abscission. AVG inhibited C2H4 formation, activity of cellulase and polygalacturonase, and abscission in ABA-treated explants. AVG did not inhibit the increase in the activity of the cell-wall degrading enzymes or abscission in a saturating level of externally supplied C2H4. This indicates that the effect of AVG resulted from inhibition of the formation of endogenous ethylene. The data indicate that in citrus leaf explants the induction of the activity of cellulase and polygalacturonase and abscission by ABA is mediated by C2H4.  相似文献   

10.
Determination of the abscisic acid and indoleacetic acid (IAA) contents of floral stem segments of nontransformed and pRi A4 TL-DNA-transformed rape (Brassica napus L. var oleifera, cv Brutor) using a high performance liquid chromatography-enzyme-linked immunosorbent assay procedure and mass spectrometry controls showed that IAA levels were not modified. The regeneration abilities of the in vitro cultured explants were compared on media supplemented with several plant growth regulator combinations. No regeneration occurred on hormone-free media, and shoot production was similar in both genotypes when supplemented with benzyladenine. In the presence of naphthaleneacetic acid (NAA), transformed explants were characterized by faster root regeneration and reduced shoot organogenesis. The optimum for root formation was the same in nontransformed and transformed plants, but the sensitivity threshold was slightly lower in the latter. The NAA inductive period was shorter (14 versus 22 h) with transformed tissue. Root neoformation occurred about 72 h earlier on transformed explants. Our results suggest mainly that there is an acceleration of the auxinic signal transduction and/or that the events preliminary to the formation of roots occur faster in the transformed tissues than in the normal ones.  相似文献   

11.
The physiological role of phenylacetic acid (PAA) as an endogenous regulator of cotyledon abscission was examined using cotton (Gossypium hirsutum L. cv LG 102) seedlings. Application of 100 micromolar or more PAA to leafless cotyledon abscission-zone explants resulted in the retardation of petiole abscission and a decrease in the rise of ethylene evolution that normally accompanies aging of these explants in vitro. The partial inhibition of ethylene evolution in these explants by PAA was indirect since application of this compound stimulated short-term (<24 hours) ethylene production. PAA treatment partially suppressed the stimulation of petiole abscission elicited by either ethylene or abscisic acid. Both free and an acid-labile, bound form of PAA were identified in extracts prepared from cotyledons. No discernible pattern of changes in free or bound PAA was found during the course of ethylene-induced cotyledon abscission. Unlike indole-3-acetic acid, transport of PAA in isolated petiole segments was limited and exhibited little polarity. On the whole, these results are not consistent with the direct participation of PAA in the endogenous regulation of cotyledon abscission.  相似文献   

12.
The addition of abscisic acid to barley (Hordeum vulgare L. cv. Himalaya) aleurone layers at the same time as gibberellic acid completely prevents the gibberellin-induced increases in the percentage of polysomes, the formation of polyribosomes, and the synthesis of α-amylase, even when the molar concentration of gibberellic acid is four times greater than the concentration of abscisic acid. The addition of abscisic acid to aleurone cells producing α-amylase (midcourse addition) inhibits the further synthesis of α-amylase and decreases the percentage of polysomes but does not change the number of ribosomes per cell.  相似文献   

13.
The physiology and anatomy of abscission has been studied in considerable detail; however, information on the regulation of gene expression in abscission has been limited because of a lack of probes for specific genes. We have identified and sequenced a 595 nucleotide bean (Phaseolus vulgaris cv Red Kidney) abscission cellulase cDNA clone (pBACl). The bean cellulase cDNA has extensive nucleic and amino acid sequence identity with the avocado cellulase cDNA pAV363. The 2.0 kilobase bean mRNA complementary to pBACl codes for a polypeptide of approximately 51 kilodalton (shown by hybrid-selection followed by in vitro translation). Bean cellulase antiserum is shown to immunoprecipitate a 51 kilodalton polypeptide from the in vitro translation products of abscission zone poly(A)+ RNA. Ethylene initiates bean leaf abscission and tissue-specific expression of cellulase mRNA. If ethylene treatment of bean explants was discontinued after 31 h and then 2,5-norbornadiene given to inhibit responses resulting from endogenously synthesized ethylene, polysomal cellulase mRNA hybridizing to pBACl decreased. Thus, ethylene is required not only to initiate abscission and cellulase gene expression but also to maintain continued accumulation of cellulase mRNA. Explants treated with auxin 4 hours prior to a 48 hour treatment with ethylene showed no substantial accumulation of RNA hybridizing to pBACl or expression of cellulase activity.  相似文献   

14.
Response of barley aleurone layers to abscisic Acid   总被引:3,自引:0,他引:3       下载免费PDF全文
Ho DT 《Plant physiology》1976,58(2):175-178
Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced α-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of α-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of α-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, we observed that the synthesis of α-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of α-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of α-amylase mRNA.  相似文献   

15.
Penetration of soybean root systems by abscisic Acid isomers   总被引:4,自引:3,他引:1       下载免费PDF全文
Markhart AH 《Plant physiology》1982,69(6):1350-1352
The penetration of soybean (Glycine max L. cv. Ransom) root systems by exogenously applied isomers of abscisic acid was monitored by measuring the concentration of the chemical in the xylem exudate of root systems exposed to a three bar hydrostatic pressure difference. The cis-trans isomer penetrated more readily than the trans-trans isomer; however, up to 6 hours was needed to reach steady-state values. Exogenous abscisic acid also decreased volume flux through the root system and increased total carbon dioxide efflux from the vessel containing the root system.  相似文献   

16.
The induction of callus formation in cultured buds of Shamouti orange (Citrus sinensis [L.] Osbeck) by abscisic acid (ABA) is a multiphasic process. (Altman, and Goren 1974 Physiol Plant 32: 55.) A study of the mediation by ethylene on this effect of ABA was undertaken. It was found that: (a) ethylene and (2-chloroethyl) phosphonic acid, as well as ABA, induced callus formation; (b) callus induction is best attained when explants are exposed to ethylene during the 1st day after excision; and (c) ABA-induced callus formation is inhibited by rhizobitoxine analog, an inhibitor of ethylene biosynthesis. It is concluded that the effect of ABA on callus formation is mediated via ethylene.  相似文献   

17.
When abscission in leaf explants from Phaseolus vulgaris, cultivar Red Kidney, was allowed to proceed while the explants were in 2H2O, a 1.25% increase in the buoyant density of cellulase in a cesium chloride gradient was observed. These data indicate that the increase in cellulase activity during abscission is a result of the synthesis of new protein. Two differentially soluble forms of cellulase are present in the abscission zone. The form which is soluble only in a high salt buffer seems more closely related to the abscission process than the form which is soluble in dilute buffer. The correlation between changes in pull force and increase in cellulase activity and the effects of several hormones on cellulase activity are discussed.  相似文献   

18.
The role of abscisic acid in the ripening of grapes   总被引:1,自引:0,他引:1  
Ripening in grapes ( Vitis vinifera L. cv. Thompson seedless) was accompanied by an increase in the levels of sucrose, glucose and fructose and a decrease in the levels of acids. The activity of glucose-6-phosphatase and fructose-l–6-bisphospbatase was lower in sweet grapes as compared to sour ones. Abscisic acid (10−6 M) stimulated the gluconeogenic process in sour grapes. The levels of some gluconeogenic enzymes were also elevated in its presence. Cyclohexitnide (0.036–1.8 mM) nullified the abscisic acid effect, suggesting that this effect involves de novo protein synthesis. The incorporation of [14C]-leucine into proteins was enhanced about 80% by abscisic acid, confirming that abscisic acid promoted protein synthesis. Again, cycloheximide blocked the hormone mediated increase in the incorporation of radioactivity into proteins. The results indicate that one of the factors for sourness in certain mature ripe grapes may be that abscisic acid is not available.  相似文献   

19.
Quantification of abscisic Acid in a single maize root   总被引:1,自引:0,他引:1       下载免费PDF全文
Quantitative analyses of abscisic acid in the elongating zone of a single maize root (Zea mays L. cv LG 11) were performed by gas chromatography-mass spectrometry using negative chemical ion ionization. Data showed that the more abscisic acid, the slower the growth, but a large dispersion of individual values was observed. We assume that abscisic acid is perhaps not correlated only to the growth rate.  相似文献   

20.
The influences of light of different wavelengths and plant growthregulators on the respiration of protoplasts isolated from tissue0 to 5 mm above the basal intercalary meristem of barley (Hordeumvulgare L. cv. Patty) leaves were studied. Respiration was measuredusing oxygen electrodes and a Cartesian-diver technique. Red,far-red and blue light all stimulated respiration in the protoplastsbut not in mitochondria isolated from them. Gibberellic acid stimulated respiration in protoplasts but abscisicacid had the opposite effect. Physiological concentrations ofindole-3-acetic acid and kinetin had no influence in eitherdirection. Combinations of gibberellic acid with light of anywavelength always increased respiration. Red or far-red light treatments in the presence of abscisicacid decreased dark respiration and only blue light significantlyreversed the inhibitory effect of abscisic acid. Cycloheximidemarkedly increased dark respiratory activity; chloramphenicolwas without effect. These results indicate that mitochondrialactivity in the leaf basal intercalary meristem was partiallycontrolled through phytochrome and a blue light receptor, andby gibberellic and abscisic acids. Changes in cytosolic proteinsynthesis were important for the initiation of enhanced mitochondrialactivity in meristems. Hordeum vulgare L., barley, abscisic acid, Cartesian-diver microrespirometry, gibberellic acid, meristematic respiration, protoplasts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号