首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fragment of DNA was cloned from the Streptomyces griseus K-63 genome by using genes (act) for the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor as a probe. Sequencing of a 5.4-kb segment of the cloned DNA revealed a set of five gris open reading frames (ORFs), corresponding to the act PKS genes, in the following order: ORF1 for a ketosynthase, ORF2 for a chain length-determining factor, ORF3 for an acyl carrier protein, ORF5 for a ketoreductase, and ORF4 for a cyclase-dehydrase. Replacement of the gris genes with a marker gene in the S. griseus genome by using a single-stranded suicide vector propagated in Escherichia coli resulted in loss of the ability to produce griseusins A and B, showing that the five gris genes do indeed encode the type II griseusin PKS. These genes, encoding a PKS that is programmed differently from those for other aromatic PKSs so far available, will provide further valuable material for analysis of the programming mechanism by the construction and analysis of strains carrying hybrid PKS.  相似文献   

2.
A standard type II polyketide synthase (PKS) gene cluster was isolated while attempting to clone the biosynthetic gene for lipstatin from Streptomyces toxytricini NRRL 15,443. This result was observed using a Southern blot of a PstI-digested S. toxytricini chromosomal DNA library with a 444 bp amplified probe of a ketosynthase (KS) gene fragment. Four open reading frames [thioesterase (TE), beta-ketoacyl systhase (KAS), chain length factor (CLF), and acyl carrier protein (ACP)], were identified through the nucleotide sequence determination and analysis of a 4.5 kb cloned DNA fragment. In order to confirm the involvement of a cloned gene in lipstatin biosynthesis, a gene disruption experiment for the KS gene was performed. However, the resulting gene disruptant did not show any significant difference in lipstatin production when compared to wild-type S. toxytricini. This result suggests that lipstatin may not be synthesized by a type II PKS.  相似文献   

3.
We cloned a new polyketide gene cluster, aur2, in Streptomyces aureofaciens CCM3239. Sequence analysis of the 9531-bp DNA fragment revealed 10 open reading frames, majority of which showed high similarity to the previously characterized type II polyketide synthase (PKS) genes. An unusual feature of the aur2 cluster is a disconnected organization of minimal PKS genes; ACP is located apart from the genes for ketosynthases KSalpha and KSbeta. The aur2 gene cluster was disrupted in S. aureofaciens CCM3239 by a homologous recombination, replacing the four genes (aur2A, E, F, G) including ketosynthase KSalpha, with antibiotic resistance marker gene. The disruption did not affect growth and differentiation, and disrupted strain produced spores with wild-type grey-pink pigmentation. The biochromatographic analysis of the culture extracts from S. aureofaciens wild type and aur2-disrupted strains did not reveal any difference in the pattern of antibacterial compounds.  相似文献   

4.
Brünker P  McKinney K  Sterner O  Minas W  Bailey JE 《Gene》1999,227(2):125-135
Streptomyces arenae produces the aromatic polyketide naphthocyclinone, which exhibits activity against Gram-positive bacteria. A cosmid clone containing the putative naphthocyclinone gene cluster was isolated from a genomic library of S. arenae by hybridization with a conserved region from the actinorhodin PKS of S. coelicolor. Sequence analysis of a 5.5-kb DNA fragment, which hybridizes with the actI probe, revealed three open reading frames coding for the minimal polyketide synthase. A strong sequence similarity was found to several previously described ketosynthases, chain length factors and acyl carrier proteins from other polyketide gene clusters. An additional open reading frame downstream of the PKS genes of S. arenae showed 53% identity to act VII probably encoding an aromatase. Another open reading frame was identified in a region of 1.436 bp upstream of the PKS genes, which, however, had no similarity to known genes in the database. Approximately 8 kb upstream of the PKS genes, a DNA fragment was identified that hybridizes to an actVII--actIV specific probe coding for a cyclase and a putative regulatory protein, respectively. Disruption of the proposed naphthocyclinone gene cluster by insertion of a thiostrepton resistance gene completely abolished production of naphthocyclinones in the mutant strain, showing that indeed the naphthocyclinone gene cluster had been isolated. Heterologous expression of the minimal PKS genes in S. coelicolor CH999 in the presence of the act ketoreductase led to the production of mutactin and dehydromutactin, indicating that the S. arenae polyketide synthase forms a C-16 backbone that is subsequently dimerized to build naphthocyclinone. The functions of the proposed cyclase and aromatase were examined by coexpression with genes from different polyketide core producers.  相似文献   

5.
6.
Räty K  Kantola J  Hautala A  Hakala J  Ylihonko K  Mäntsälä P 《Gene》2002,293(1-2):115-122
We have cloned and sequenced polyketide synthase (PKS) genes from the aclacinomycin producer Streptomyces galilaeus ATCC 31,615. The sequenced 13.5-kb region contained 13 complete genes. Their organization as well as their protein sequences showed high similarity to those of other type II PKS genes. The continuous region included the genes for the minimal PKS, consisting of ketosynthase I (aknB), ketosynthase II (aknC), and acyl carrier protein (aknD). These were followed by the daunomycin dpsC and dpsD homologues (aknE2 and F, respectively), which are rare in type II PKS clusters. They are associated with the unusual starter unit, propionate, used in the biosynthesis of aklavinone, a common precursor of aclacinomycin and daunomycin. Accordingly, when aclacinomycins minimal PKS genes were substituted for those of nogalamycin in the plasmid carrying genes for auramycinone biosynthesis, aklavinone was produced in the heterologous hosts. In addition to the minimal PKS, the cloned region included the PKS genes for polyketide ketoreductase (aknA), aromatase (aknE1) and oxygenase (aknX), as well as genes putatively encoding an aklanonic acid methyl transferase (aknG) and an aklanonic acid methyl ester cyclase (aknH) for post-polyketide steps were found. Moreover, the region carried genes for an activator (aknI), a glycosyl transferase (aknK) and an epimerase (aknL) taking part in deoxysugar biosynthesis.  相似文献   

7.
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis.  相似文献   

8.
9.
The geneCAL1 (also known asCDC43) ofSaccharomyces cerevisiae encodes theβ subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant enzymes encoded bycall-1, andcdc43-2 tocdc43-7, expressed in bacteria, have shown that all of the mutant enzymes possess reduced activity, and that none shows temperature-sensitive enzymatic activities. Nonetheless, all of thecall/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperature sensitive. Thecall-1 mutation, located most proximal to the C-terminus of the protein, differs from the othercdc43 mutations in several respects. An increase in soluble Rholp was observed in thecall-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype ofcall-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious incall-1 cells, but not in othercdc43 mutants or the wild-type strains. Thecdc43-5 mutant cells accumulate Cdc42p in soluble pools andcdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among thecall/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations.  相似文献   

10.
原晓龙  华梅  陈剑  王娟  杨宇明  王毅 《广西植物》2018,38(9):1146-1154
为了研究牛樟芝中PKS基因与化合物之间的关系,该研究通过对牛樟芝基因组分析获得牛樟芝聚酮合酶基因,以此序列为模板设计含有起始密码子和终止密码子的特异引物并以牛樟芝c DNA为模板克隆获得一个高度还原型PKS(HR-PKS)基因全长,命名为AcPKS2;对AcPKS2基因进行生物信息学分析,并比较该基因在不同培养基上的表达量。结果表明:AcPKS2全长7 842 bp,有24个内含子,其外显子共编码2 613个氨基酸,该蛋白的相对分子质量为293.5 kDa,理论等电点pI为5.78。用CDD分析其结构域显示,该基因属于HR-PKS,其结构域组织排列为KS-AT-DH-MT-ER-KR-ACP-TE,8个结构域其活性位点分别为β-酮基合成酶(DTACSSSL)、酰基转移酶(GHSIGETA)、脱水酶(RNDGSTSPL)、甲基转移酶(SFDIITAFDV)、烯酰还原酶(HAGVSSPAA)、酮基还原酶(GSPGQANYTAA)、酰基转移酶(YGLDSLTSVRL)、硫酯酶(KQPNGPY)。系统发育树显示AcPKS2与其他化合物未知的HR-PKS蛋白聚为一支,结构域和系统进化树分析显示该基因可能编码一种新的含TE结构域高度还原型聚酮合酶;表达分析结果显示葡萄糖和果糖能够诱导该基因的表达。  相似文献   

11.
聚酮化合物(polyketides)是一类庞大的次级代谢家族,聚酮合酶(polyketide synthase,PKS)是介导聚酮化合物生物合成的关键酶。通过巢氏简并PCR与染色体步行的方法,获得了草菇中的编码PKS的基因vv-alb的全长序列,并通过荧光实时定量RT-PCR方法对vv-alb基因在草菇不同生长阶段与不同部位的表达情况进行了初步分析,为进一步研究PKS在草菇和其他食用真菌生物代谢过程中的作用奠定了一定的基础。  相似文献   

12.
Fungal polyketides comprise a diverse group of secondary metabolites that play an important role for drug discovery, as pigments, and as mycotoxins. Their biosynthesis is governed by multidomain enzymes, so-called fungal type I polyketide synthases (PKS). Investigating the molecular basis of polyketide biosynthesis in fungi is of great importance for ecological and pharmacological reasons. In addition, cloning, functional analysis and expression of fungal PKS genes also set the basis for engineering the yet largely untapped biosynthetic potential.  相似文献   

13.
A methodology was developed to construct any desired chromosomal mutation in the gene cluster that encodes the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2). A positive selection marker (resistance gene) is first introduced by double crossing-over into the chromosomal site of interest by use of an unstable delivery plasmid. This marker is subsequently replaced by the desired mutant allele via a second high-frequency double recombination event. The technology has been used to: (i) explore the significance of translational coupling between two adjacent PKS genes; (ii) prove that the acyl carrier protein (ACP) encoded by a gene in the cluster is necessary for the function of the actinorhodin PKS; (iii) provide genetic evidence supporting the hypothesis that serine 42 is the site of phosphopantetheinylation in the ACP of the actinorhodin PKS; and (iv) demonstrate that this ACP can be replaced by a Saccharopolyspora fatty acid synthase ACP to generate an active hybrid PKS.  相似文献   

14.
15.
Streptomyces species offer many potential advantages as hosts for the expression and secretion of eukaryotic gene products. In this review we discuss the expression and localization signals that have been used to direct heterologous gene expression and the applications of these signals. Finally, we discuss future strategies aimed at increasing the capacity of this host for the high level production of biologically active eukaryotic gene products.  相似文献   

16.
Plasmodial bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a validated antimalarial drug target. In this study, expression of the putative dhfr-ts of Plasmodium ovale rescued the DHFR chemical knockout and a TS null bacterial strain, demonstrating its DHFR and TS catalytic functions. PoDHFR-TS was expressed in Escherichia coli BL21 (DE3) and affinity purified by Methotrexate Sepharose column. Biochemical and enzyme kinetics characterizations indicated that PoDHFR-TS is similar to other plasmodial enzymes, albeit with lower catalytic activity but better tolerance of acidic pH. Importantly, the PoDHFR from Thai isolate EU266602 remains sensitive to the antimalarials pyrimethamine and cycloguanil, in contrast to P. falciparum and P. vivax isolates where resistance to these drugs is widespread.  相似文献   

17.
A generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors. With one correctable exception, the amino acid substitutions required for restriction site placements were compatible with polyketide production. When expressed in E. coli the codon-optimized synthetic gene cluster produced significantly more protein than did the wild-type sequence. Indeed, for optimal polyketide production, PKS expression had to be down-regulated by promoter attenuation to achieve balance with expression of the accessory proteins needed to support polyketide biosynthesis.  相似文献   

18.
Streptothricins (STs) are used commercially to treat bacterial and fungal diseases in agriculture. Mining of the sequenced microbial genomes uncovered two cryptic ST clusters from Streptomyces sp. C and Streptomyces sp. TP-A0356. The ST cluster from S. sp. TP-A0356 was verified by successful heterologous expression in Streptomyces coelicolor M145. Two new ST analogs were produced together with streptothricin F and streptothricin D in the heterologous host. The ST cluster was further confirmed by inactivation of gene stnO, which was proposed encoding an aminomutase supplying -lysines for the poly-β-Lys chain formation. A putative biosynthetic pathway for STs is proposed based on bioinformatics analyses of the ST genes and experimental evidence.  相似文献   

19.
The entire biosynthetic pathway for the synthesis of the antibiotic pigment violacein is encoded on a 14.5 kilobase (kb) fragment of theChromobacterium violaceum genome. When cloned intoEscherichia coli, pigment synthesis is strongly expressed, as it is in a wide range of Gram-negative bacteria. Transposon mutagenesis resulted in a number of different phenotypes that correlated with transposon insertion sites in the gene cluster.  相似文献   

20.
The geneCAL1 (also known asCDC43) ofSaccharomyces cerevisiae encodes the subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant enzymes encoded bycall-1, andcdc43-2 tocdc43-7, expressed in bacteria, have shown that all of the mutant enzymes possess reduced activity, and that none shows temperature-sensitive enzymatic activities. Nonetheless, all of thecall/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperature sensitive. Thecall-1 mutation, located most proximal to the C-terminus of the protein, differs from the othercdc43 mutations in several respects. An increase in soluble Rholp was observed in thecall-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype ofcall-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious incall-1 cells, but not in othercdc43 mutants or the wild-type strains. Thecdc43-5 mutant cells accumulate Cdc42p in soluble pools andcdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among thecall/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号