首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single blastomeres from four- and eight-cell mouse embryos were fused into the enucleated halves of two-cell embryos, and the ability of these reconstituted embryos to develop in vitro and in vivo was examined. The proportion of these reconstituted embryos developing to blastocysts was 74% (60/81) when four-cell embryo blastomeres were used as nuclei donors and 31% (57/182) when eight-cell embryo blastomeres were used. Eight complete sets of the quadruplet-reconstituted embryos developed to blastocysts, and five live young (9%, 5/57) were obtained after transfer; however, none of the live young were clones. Although when using blastomeres from eight-cell embryos no complete set of eight developed to blastocysts, sextuplets were obtained. The blastocysts, however, failed to produce live young after transfer. In assessing the outgrowths, it was found that 43% of those derived from reconstituted embryos using blastomeres from four-cell embryos had an inner cell mass (ICM); however, outgrowths derived from reconstituted embryos using blastomeres from eight-cell embryos lacked an ICM. These results suggest that the genomes of four- and eight-cell nuclei introduced into the enucleated halves of two-cell embryos are reversed to support the development of the reconstituted embryo.  相似文献   

2.
The present study investigated the in vitro developmental potential of reconstituted mouse embryos produced from the cytoplast of pronuclear-stage embryos or oocytes and single blastomeres of 2-cell stage embryos by electrofusion. The cytoplast of pronuclear-stage embryos and oocytes were obtained by manual bisection with a fine glass needle under a dissecting microscope. The fusion rates of the reconstituted embryos produced from the cytoplast of oocytes and single blastomeres of 2-cell stage embryos (O-SB2: 38.1 and 41.5%) were significantly lower than those produced from the cytoplast of pronuclear-stage embryos and single blastomeres of 2-cell stage embryos (P-SB2: 91.2 and 97.6%; P<0.001). Reconstituted embryos were encapsulated in alginate gel and were cultured for 96 hours. Similarly, the cleavage and development rates to the blastocyst stage of O-SB2 (56.3, 61.2 and 2.0, 3.1%, respectively) were significantly lower than those of the P-SB2 (91.0, 91.2 and 18.6, 20.7%; respectively, P<0.05). The cleavage and development rates to the blastocyst stage (61.2 and 2.0%) of reconstituted embryos produced from single blastomeres of late 2-cell stage embryos and oocyte cytoplast improved after activation by ethanol treatment (76.1 and 21.7%). However, the use of single blastomeres of early 2-cell stage embryos as nuclear donors did not enhance the cleavage and development rates of the reconstituted embryos to the blastocyst stage.  相似文献   

3.
Production of genetically identical pairs of monkeys would have tremendous implications for biomedical research, particularly immunological studies and vaccine trials. Specific aims of this study were to (1) determine whether aggregation of embryos split into halves or quarters with equal numbers of either developmentally asynchronous or tetraploid blastomeres would enhance their developmental potential in vitro and increase total cell numbers in resulting blastocysts, and (2) determine the allocation of tetraploid and developmentally asynchronous blastomeres in resulting blastocysts. Results demonstrated that development into blastocysts was greater (p < 0.05) for embryos split into pairs (39.8%) than for those split into quadruplet sets (17.4%) and similar (p > 0.05) to that of nonmanipulated controls (59.6%). Creation of chimeras from aggregation of a single 4-cell and four 16-cell stage blastomeres resulted in blastocyst formation (69.2%) similar to that of nonmanipulated control embryos (66.9%). However, neither development nor total cell numbers in resulting blastocysts differed between aggregate chimeras and those split into quadruplet sets at the 16-cell stage. Blastocysts resulting from the aggregate chimeras were derived strictly from the 16-cell stage blastomeres, with complete exclusion of the 4-cell stage blastomeres. Aggregation of split embryos with equal numbers of tetraploid blastomeres doubled (p < 0.05) both the proportion developing into blastocysts and the total cell numbers in resulting blastocysts. Tetraploid blastomeres were allocated to both the inner cell mass and trophectoderm of resulting blastocysts. In conclusion, due to exclusion of the less advanced cells, aggregation of developmentally asynchronous blastomeres did not improve the developmental competence or cell numbers of split rhesus embryos. Reconstitution of split embryos with equal numbers of tetraploid blastomeres enhanced their developmental potential and cell numbers in resulting blastocysts. However, tetraploid blastomeres were allocated to both the inner cell mass and trophectoderm.  相似文献   

4.
Wells KD  Powell AM 《Cloning》2000,2(1):9-22
A marker has been developed to allow detection of blastomeres that originate from embryos produced by nuclear transfer (NT) of genetically engineered fetal fibroblasts. A plasmid (phEFnGFP) was constructed with a G418 resistance cassette for selection in fibroblasts and a nuclear localized green fluorescent protein (nGFP) expression cassette that expresses in every cell of day-6, -7, and -8 bovine embryos. This construct was utilized to follow the blastomere distribution in aggregation chimeras produced from fertilized embryos (in vitro produced, IVP) or parthenotes and NT embryos. Fluorescent and nonfluorescent NT embryos were aggregated early on day 4 and evaluated on day 8. Nuclei of blastomeres that carried the transgene were fluorescent under both UV epifluorescence (Hoechst 33342) and blue epifluorescence (nGFP). There was no bias in the distribution of green fluorescent blastomeres in the inner cell mass (ICM) or trophectoderm in NT<>NT chimeras. However, there was a strong bias for NT blastomeres to populate the ICM when aggregated with IVP embryos or parthenotes. There was also a strong bias against NT blastomeres in the trophectoderm when aggregated to IVP embryos. However, the bias against NT blastomeres in the trophectoderm was significantly less (p < 0.05) when aggregated with parthenotes as compared to aggregation with IVP embryos. In NT<>NT aggregates, no chimeric embryos were produced that had an ICM composed of blastomeres from a single origin. However, in NT<>Parthenote aggregates, 67% of the blastocysts had an ICM composed exclusively of NT origin. The remaining blastocysts ranged from 0% to 83% of the ICM that expressed nGFP. Similarly, in NT<>IVP aggregates 50% of the blastocysts had an ICM composed exclusively of NT origin. The remaining blastocysts ranged from 19% to 71% of the ICM being of NT origin. We conclude that production of divaricated chimeras from NT origin is feasible. Other applications of this technology are discussed.  相似文献   

5.
Liu WX  Zheng Y  Luo MJ  Huang P  Yue LM  Wang L  He YP  Zhang JH 《Theriogenology》2005,64(5):1114-1120
To evaluate whether the developmental potential of embryos that were partially damaged after freezing and thawing can be improved by removal of necrotic blastomeres. Eight-cell mouse embryos were cryopreserved using 1,2-propanediol and sucrose as cryoprotectant with slow cooling procedure. After thawing, blastocyst formation and hatching of fully intact embryos were compared between no treatment and with laser-assisted hatching. For partially intact embryos, the effects of removal of necrotic blastomeres with micromanipulation were evaluated. Laser-assisted hatching of mouse cryopreserved fully intact embryos significantly increased blastocyst hatching (63.4% versus 48.3%, P<0.05), but had little effect on blastocyst formation (72.0% versus 70.1%, P>0.05). The removal of necrotic blastomeres from partially damaged mouse cryopreserved embryos with micromanipulation significantly increased blastocyst formation (52.9% versus 32.0%, P<0.05) and blastocyst hatching (41.2% versus 22.0%, P>0.05) compared with the control group. The developmental potential of partially damaged cryopreserved embryos can be improved by removal of necrotic blastomeres with micromanipulation.  相似文献   

6.
The development rate of bovine chimeric embryos reconstituted at the 4-cell stage is relatively low. If chimerism is to be used as an approach in producing transgenic livestock, it is important to investigate whether this rate is affected by the sex of the blastomeres being combined and if all blastomeres survive equally well. In Experiment 1, blastomeres from 4-cell stage embryos were inserted into surrogate zonae pellucidae either in pairs to reconstitute 4-cell chimeras, or as the original sets of four to make handled controls. The development of chimeras with one pair of blastomeres labelled with PKH26-GL was also investigated. The rate of development into blastocysts was similar in chimeras with unlabelled blastomeres (23%) and in those in which one pair of blastomeres was labelled (26%) and was lower (P < 0.001) than in the handled and IVF control groups (43 and 58%, respectively). Labelled cells were distributed approximately evenly between ICM and trophoblast. In Experiment 2, the effect of sex differences between pairs of blastomeres in chimeras was investigated; chimeras were reconstituted from pairs of blastomeres taken from 4-cell embryos in which the remaining pair was sexed by PCR. No significant differences according to the sex of constituent blastomeres were detectable (mixed sex, 27%; males, 24%; females, 21%; P > 0.05). These results suggest that, in addition to the negative effects of micromanipulation, factors other than the sex of the blastomeres are involved in the reduced rate of development of chimeric bovine embryos. They also confirm the usefulness of PKH26-GL labelling for tracking the progeny of cleaving bovine blastomeres at least to the blastocyst stage.  相似文献   

7.
Assessment of nuclear status is important when a biopsied single blastomere is used for embryo sexing. In this study we investigated the nuclear status of blastomeres derived from 8- to 16-cell stage in vitro fertilised bovine embryos to determine the representativeness of a single blastomere for embryo sexing. In 24 embryos analysed, the agreement in sex determination between a biopsied single blastomere and a matched blastocyst by polymerase chain reaction (PCR) was 83.3%. To clarify the discrepancies, karyotypes of blastomeres in 8- to 16-cell stage bovine embryos were analysed. We applied vinblastine sulfate at various concentrations and for different exposure times for metaphase plate induction in 8- to 16-cell stage bovine embryos. The 1.0 mg/ml vinblastine sulfate treatment for 15 h was selected as the most effective condition for induction of a metaphase plate (> 45%). Among 22 embryos under these conditions, only 8 of 10 that had a normal diploid chromosome complement showed a sex chromosomal composition of XX or XY (36.4%) and 2 diploid embryos showed mosaicism of the opposite sex of XX and XY in blastomeres of the embryo (9.1%). One haploid embryo contained only one X-chromosome (4.5%). Four of another 11 embryos with a mixoploid chromosomal complement contained a haploid blastomere with a wrong sex chromosome (18.2%). In conclusion, assessment of nuclear status of 8- to 16-cell stage bovine embryos revealed that morphologically normal embryos had a considerable proportion of mixoploid blastomeres and sex chromosomal mosaicism; these could be the cause of discrepancies in the sex between biopsied single blastomeres and matched blastocysts by PCR.  相似文献   

8.
Tanaka H 《Theriogenology》1999,51(7):1225-1237
This study was conducted to investigate the influence of the timing of blastomere isolation after the removal of nocodazole on the subsequent division of blastomeres and developmental ability of reconstituted bovine embryos. The division rate of isolated blastomeres was examined at 3, 5 and 24 h of culture after nocodazole removal. Furthermore, isolated blastomeres and those of whole embryos were used as donors in nuclear transfer to determine the development of reconstituted embryos. The division rate of isolated blastomeres at 3 h was significantly lower than the presumptive division rate of blastomeres from whole embryos (P<0.05). When these blastomeres were used as donor nuclei, the dividing blastomeres yielded a significantly higher development rate than blastomeres from whole embryos (P<0.05). These results confirm that the timing of blastomere isolation influences the subsequent division of blastomeres and the developmental ability of the reconstituted embryos.  相似文献   

9.
To examine the pluripotency of cryopreserved blastomeres, we transplanted them into blastula. Donor blastomeres were prepared from blastula of goldfish (Carassius auratus) and cryopreserved in liquid nitrogen for two months. Fifty-five percent and 44% of blastomeres survived after thawing. Cryopreserved blastomeres were transplanted to the blastula of triploid crucian carp (C. a. longsdorfii), which reproduces gynogenetically in nature. At four days after the operation, resultant chimeric embryos transplanted with cryopreserved blastomeres showed a survival rate (41.6%) lower than that of embryos transplanted with unfrozen blastomeres (57.1%). Transplanted blastomeres were histologically identified in various organs derived from all three germ layers. A primordial germ cell differentiated from a cryopreserved blastomere was detected in one of the 32 chimeric fish examined. These results suggest blastomeres that survive after cryopreservation retain their pluripotency and are able to differentiate into both somatic and germ cell lines.  相似文献   

10.
We compared two methods of zona pellucida drilling. 213 embryos were biopsied with acid Tyrode. Each biopsy took 3 minutes and the entire procedure ~29 minutes. 5% of blastomeres lysed, 49% of embryos became blastocyst and 36% of patients became pregnant. 229 embryos were biopsied with laser. Each biopsy took 30 seconds and the entire procedure ~7 minutes. 2.5% of blastomeres lysed, 50.6% of embryos became blastocyst and 47% of patients became pregnant. We can conclude that laser can be used for embryo biopsy. Reduction of embryo exposure and of removed blastomeres is associated with increased blastocysts available for transfer and a better clinical outcome.  相似文献   

11.
Numerical chromosome abnormalities were studied in single blastomeres from arrested or otherwise morphologically abnormal human preimplantation embryos. A 6-h FISH procedure with fluorochrome-labeled DNA probes was developed to determine numerical abnormalities of chromosomes X, Y, and 18. The three chromosomes were stained and detected simultaneously in 571 blastomeres from 131 embryos. Successful analysis including biopsy, fixation, and FISH analysis was achieved in 86.5% of all blastomeres. The procedure described here offers a reliable alternative to sexing of embryos by PCR and allows simultaneous ploidy assessment. For the three chromosomes tested, numerical aberrations were found in 56.5% of the embryos. Most abnormal embryos were polyploid or mosaics, and 6.1% were aneuploid for gonosomes or chromosome 18. Extrapolation of these results to all human chromosomes suggests that the majority of abnormally developing and arrested human embryos carry numerical chromosome abnormalities.  相似文献   

12.
To establish reliable criteria for the evaluation of nuclear donor embryos, we studied the effect of cell number and cell size of in vitro produced day 6 donor morulae on the rate of blastocyst formation following nuclear transfer to in vitro matured oocytes. In experiment 1, donor embryos were divided into three groups with low (25–34), intermediate (40–55), and high (60–81) blastomere numbers. Transfer of nuclei from day 6 morulae with intermediate and high cell numbers resulted in a significantly higher blastocyst rate (31% and 32%, respectively) than use of nuclei from day 6 morulae with low cell numbers (17%) or nuclei from day 7 morulae with 50–83 blastomeres (19%). This suggests that blastomeres from the developmentally advanced day 6 morulae are more viable than blastomeres from retarded embryos. In experiment 2, we evaluated the effect of blastomere size in day 6 donor morulae with intermediate (40–55) or high (60–81) cell numbers on the efficiency of nuclear transfer. In both classes of embryos, small blastomeres were better nuclear donors than large blastomeres. The rates of development to the blastocyst stage were 28% versus 15% (40–55 cells) and 41% versus 25% (60–81 cells), suggesting that small blastomeres include a higher proportion of totipotent cells than the polarized large blastomeres. Our results demonstrate that blastomere number and size markedly affect the efficiency of nuclear transfer and therefore are useful criteria for evaluating nuclear donor embryos. These parameters are easy to determine and may therefore be helpful to improve the efficiency of cattle cloning. © 1995 wiley-Liss, Inc.  相似文献   

13.
Chromosomal normality and sex were diagnosed in each blastomere of bovine embryos derived from in vitro fertilization (IVF). Bovine embryos developing to the 5- to 10-cell stage were separated into individual blastomeres with 0.5% protease. After treatment with 100 ng/mL vinblastine sulfate for 8 to 10 h, they were prepared for chromosome samples. In total, 33 bovine embryos and 185 blastomeres were examined. Chromosomal normality was analyzed in 43.8% (81/185) of the blastomeres and 60.6% (20/33) of the embryos; while chromosomal anomalies were found in 16 (80%, 16/20) of the embryos, 5 haploid embryos and 11 mosaic (n/2n) embryos. Mosaicism characteristic of the opposite sex in X-and Y-chromosomes was found in 2 haploid embryos, and that of a Y-chromosome and of XX chromosomes in 1 n/2n embryo. Various sex-chromosome compositions were also observed in the other 10 chromosomal mosaic n/2n embryos.  相似文献   

14.
In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.  相似文献   

15.
This study evaluated the serine/threonine phosphatase inhibitor calyculin-A for rapid, efficient induction of premature chromosome condensation (PCC) in blastomeres obtained from Day 3 bovine and Day 2 murine eight-cell stage embryos, and its potential for use in cytogenetic analysis. Experiment 1 tested calyculin-A duration (0, 60, 120, and 180min) to induce PCC in bovine blastomeres. More blastomeres that underwent PCC had chromosomes suitable for cytogenetic analysis if treated for 120 or 180min (P<0.005). Experiment 2 compared doses of calyculin-A (0, 10, 50, and 100nM) on bovine blastomeres; calyculin-A (50nM, 120min) induced PCC suitable for cytogenetic analysis in the greatest number of blastomeres when compared to other doses (52.5%; P<0.005). Effects of calyculin-A (50nM) on murine blastomeres at durations of 0, 60, 90, and 120min to induce PCC were tested in Experiment 3, with 90min inducing the highest frequency of condensed chromosomes suitable for cytogenetic analysis (34%; P<0.05). Finally, Experiment 4 evaluated calyculin-A treated bovine embryos under optimal conditions (50nM, 120min) for use in gender and cytogenetic analysis. Whole chromosome paint probes were successfully hybridized to chromosomes along with 4',6-diamidino-2-phenylindole dihydrochloride hydrate (DAPI) counterstaining, allowing detection of embryo gender (54% F:46% M) and ploidy of individual blastomeres within embryos (64% diploid:36% mixoploid embryos). In conclusion, we inferred that calyculin-A was useful for rapid induction of PCC, producing chromosome spreads suitable for cytogenetic analysis of blastomeres in G1 or G2/M phase of the cell cycle.  相似文献   

16.
The optimal oxygen tension for development of preimplantation mouse embryos to the blastocyst stage in vitro was found to be between 2.5% and 5%. One- and two-cell embryos had a more sharply defined range of oxygen tension capable of supporting development than 8-cell and morula stages. At all stages of development, more embryos developed to the blastocyst stage under 5% O2 compared to the numbers of developing under higher oxygen tensions (20% and 40% O2). The blastocysts developing under 20% O2 had fewer blastomeres than those which developed under 5% O2. As the time required for development to the blastocyst stage in vitro increased, there were fewer blastomeres present at the blastocyst stage. These results indicate that the cleaving mouse embryo has an optimal oxygen requirement in vitro of about 5%. At higher oxygen tensions, fewer embryos develop to the blastocyst stage and in those which do develop, there are fewer cell divisions. If a gradient of oxygen tension exists across the blastomeres from the outside of the embryo to its centre, the blastomeres might be using this gradient to obtain imformation about their location within the embryo and respond accordingly. Thus blastomeres on the outside at a higher oxygen tension would divide at a slower rate and form trophectoderm whereas those on the inside at a lower oxygen tension would divide more rapidly and contribute to the inner cell mass.  相似文献   

17.
Lee JH  Park JH  Lee SH  Park CS  Jin DI 《Theriogenology》2004,62(8):1452-1458
Fluorescence in situ hybridization (FISH) is a sensitive technique for molecular diagnosis of chromosomes on single cells and can be applied to sex determination of embryos. The objective has been to develop an accurate and reliable bovine Y chromosome-specific DNA probe in order to sex biopsed blastomeres derived from IVF bovine embryos by FISH. Bovine Y chromosome-specific PCR product derived from BtY2 sequences was labeled with biotin-16-dUTP (BtY2-L1 probe), and FISH was performed on karyoplasts of biopsed blastomeres and matched demi-embryos. Our FISH signal was clearly detected in nuclei of blastomeres of male embryos. FISH analysis of bovine embryos gave high reliability (96%) between biopsied blastomeres and matched demi-embryos. These results indicated that the BtY2-L1 bovine Y chromosome-specific FISH probe was an effective probe for bovine embryo sexing, and the FISH technique of probe detection could improve the efficiency and reliability.  相似文献   

18.
Three types of defects of preimplantation embryogenesis contribute to the developmental arrest of cleaving human embryos: blastomere fragmentation, abnormal nuclear status and chromosomal disorders. Data concerning the relation and succession of these abnormalities during first mitotic cycles of the human zygote are controversial and mainly empirical at present. In this study we have performed simultaneous evaluation of blastomere fragmentation, nuclear apoptotic changes and the ploidy of four chromosomes (1, 5, 19 and X or 18, 21, X and Y) in 193 human embryos. Another group of 28 embryos was subjected to TUNEL for confirmation of apoptosis in blastomere nuclei. Nuclei with apoptotic chromatin were seen in nearly 1/10 of blastomeres of embryos with good morphology and in more than 1/5 of blastomeres of embryos with more than 20% fragmentation. The correct number of investigated chromosomes was registered in 85.2% of successfully tested embryos. Chromatin apoptotic changes are the only limiting factor for the success of chromosomal FISH tests. Nearly 1/2 of embryos with at least one apoptotic nucleus were chromosomally abnormal. For the embryos that contain only normal nuclei, the rate of ploid normality was more than 89%. The rate of euploidy was higher (66%) in embryos with a significant degree of cell fragmentation. Moderate cell fragmentation was not related to significant increase of chromatin and chromosomal disorders. In a substantial portion of abnormal blastomeres, chromatin damage preceded cell fragmentation. Nuclear destruction in human blastomeres was illustrated by fluorograms of different stages of chromatin lesions.  相似文献   

19.
本研究应用激光扫描共聚焦显微镜的光漂白恢复技术(FRAP)分析兔早期胚胎卵裂球之间通过间隙连接介导的细胞通讯(GJIC)。研究结果发现,用强激光分别将4-细胞期胚胎、异裂胚胎和8-细胞期胚胎的一个卵裂球荧光光漂白后,经过15分钟的荧光恢复,4-细胞期胚胎的光漂白恢复率为17.8%,异裂胚胎的光漂白恢复率为23.7%,二者之间没有明显的差异;8-细胞期胚胎的光漂白恢复率为78.2%,与前二者之间存在明显的差异。推测兔早期胚胎卵裂球细胞间隙连接建立的时间在8-细胞阶段,胚胎卵裂球间隙连接通讯可能是兔胚胎正常发育的重要条件。  相似文献   

20.
The present study was conducted to establish a simple and efficient method of producing monozygotic twin calves using the blastomere separation technique. To produce monozygotic twin embryos from zona-free two- and eight-cell embryos, blastomeres were separated mechanically by pipetting to form two demi-embryos; each single blastomere from the two-cell embryo and tetra-blastomeres from the eight-cell embryo were cultured in vitro using the Well of the Well culture system (WOW). This culture system supported the successful arrangement of blastomeres, resulting in their subsequent aggregation to form a demi-embryo developing to the blastocyst stage without a zona pellucida. There was no significant difference in the development to the blastocyst stage between blastomeres separated from eight-cell (72.0%) and two-cell (62.0%) embryos. The production rates of the monozygotic pair blastocysts and transferable paired blastocysts for demi-embryos obtained from eight-cell embryos (64.0 and 45.0%, respectively) were higher than those for demi-embryos obtained from two-cell embryos (49.0 and 31.0%, P<0.05). The separated demi-embryos obtained from eight-cell embryos produced by IVM/IVF of oocytes collected by ovum pick-up (OPU) from elite cows and cultured in wells tended to have a higher pregnancy rate (78.9% vs. 57.1%) and similar monozygotic twinning rate (40.0% vs. 33.3%) compared with monozygotic twin blastocysts obtained by the conventional bisection of in vivo derived blastocysts. In conclusion, producing twins by separation of blastomeres in OPU-IVF embryos, followed by the WOW culture system, yielded viable monozygotic demi-embryos, resulting in high rates of pregnancy and twinning rates after embryo transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号