首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.  相似文献   

2.
The peptide CspB-1, which represents residues 1-22 of the cold shock protein CspB from Bacillus subtilis, has been shown to form amyloid fibrils when solutions containing this peptide in aqueous (50%) acetonitrile are diluted in water [M. Gross et al. (1999) Protein Science 8, 1350-1357] We established conditions in which reproducible kinetic steps associated with the formation of these fibrils can be observed. Studies combining these conditions with a range of biophysical methods reveal that a variety of distinct events occurs during the process that results in amyloid fibrils. A CD spectrum indicative of beta structure is observed within 1 min of the solvent shift, and its intensity increases on a longer timescale in at least two kinetic phases. The characteristic wavelength shift of the amyloid-binding dye Congo Red is established within 30 min of the initiation of the aggregation process and corresponds to one of the phases observed by CD and to changes in the Fourier transform-infrared spectrum indicative of beta structure. Short fibrillar structures begin to be visible under the electron microscope after these events, and longer, well-defined amyloid fibrils are established on a timescale of hours. NMR spectroscopy shows that there are no significant changes in the concentration of monomeric species in solution during the events leading to fibril formation, but that soluble aggregates too large to be visible in NMR spectra are present throughout the process. A model for amyloid formation by this peptide is presented which is consistent with these kinetic data and with published work on a variety of disease-related systems. These findings support the concept that the ability to form amyloid fibrils is a generic property of polypeptide chains, and that the mechanism of their formation is similar for different peptides and proteins.  相似文献   

3.
The amyloid fold is usually considered a result of protein misfolding. However, a number of studies have recently shown that the amyloid structure is also used in nature for functional purposes. CsgA is the major subunit of Escherichia coli curli, one of the most well-characterized functional amyloids. Here we show, using a highly efficient approach to prepare monomeric CsgA, that in vitro fibrillation of CsgA occurs under a wide variety of environmental conditions and that the resulting fibrils exhibit similar structural features. This highlights how fibrillation is "hardwired" into amyloid that has evolved for structural purposes in a fluctuating extracellular environment and represents a clear contrast to disease-related amyloid formation. Furthermore, we show that CsgA polymerization in vitro is preceded by the formation of thin needlelike protofibrils followed by aggregation of the amyloid fibrils.  相似文献   

4.
Lithostathine is a calcium carbonate crystal habit modifier. It is found precipitated under the form of fibrils in chronic calcifying pancreatitis or Alzheimer's disease. In order to gain better insight into the nature and the formation of fibrils, we have expressed and purified recombinant lithostathine. Analytical ultracentrifugation and quasi-elastic light scattering techniques were used to demonstrate that lithostathine remains essentially monomeric at acidic pH while it aggregates at physiological pH. Analysis of these aggregates by electron microscopy showed an apparently unorganized structure of numerous monomers which tend to precipitate forming regular unbranched fibrils. Aggregated forms seem to occur prior to the apparition of fibrils. In addition, we have demonstrated that these fibrils resulted from a proteolysis mechanism due to a specific cleavage of the Arg(11)-Ile(12) peptide bond. It is deduced that the NH(2)-terminal undecapeptide of lithostathine normally impedes fiber formation but not aggregation. A theoretical model explaining the formation of amyloid plaques in neurodegenerative diseases or stones in lithiasis starting from lithostathine is described. Therefore we propose that lithostathine, whose major function is unknown, defines a new class of molecules which is activated by proteolysis and is not involved in cytoskeleton nor intermediate filament functions.  相似文献   

5.
AlphaB-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alphaB-crystallin in detail, and also that of alphaA-crystallin and the disease-related mutant R120G alphaB-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alphaB-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. (1)H NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alphaB-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils.  相似文献   

6.
Understanding the role of the L/D-stereospecificity of amino acids is important in obtaining further insight into the mechanism of the formation of amyloid fibrils. Beta(2)-microglobulin is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. A 22-residue peptide of beta(2)-microglobulin, Ser20-Lys41 (L-K3 peptide), obtained by digestion with Acromobacter protease I, formed amyloid-like fibrils in 50% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl at 25 degrees C, as confirmed by thioflavin T fluorescence, circular dichroism spectra, and atomic force microscopy images. A synthetic K3 peptide composed of D-amino acids (D-K3 peptide) formed similar fibrils but with opposite chirality as indicated by circular dichroism spectra. A mixture of L-K3 and D-K3 peptides also formed fibrils, although the L- and D-amino acid composition of each fibril is unknown. To examine the possible cross-reactivity between L- and D-enantiomers, we carried out seeding experiments in which preformed seeds were extended by monomers. The results revealed that only the homologous extensions proceed smoothly, i.e., the growth of L-seeds by L-monomers or D-seeds by D-monomers. The results suggest that, while the fibrils derived from L- and D-peptides form in a similar manner but with opposite stereochemistry, a cross-reaction between them is prevented because the geometry of the mixed sheet cannot satisfy dominant factors for beta-sheet stabilization.  相似文献   

7.
Here I review the molecular mechanisms by which water-soluble monomeric amyloid-β (Aβ) peptides are transformed into well-organized supramolecular complexes called amyloid fibrils. The mechanism of amyloid formation is considered theoretically on the basis of experimental results, and the structural and mechanistic similarities of amyloid fibrils to three-dimensional crystals are highlighted. A number of important results from the literature are described. These include the observation that a correct ratio of monomer association and dissociation rate constants is key for formation of well-organized amyloid fibrils. The dynamic nature of the amyloid-β structure is discussed, along with the possibly obligate requirement of the transient formation of a hairpin-like fold prior to its incorporation into amyloid fibrils. Many rounds of monomer association and dissociation events may be present during an apparently silent lag-period. Amongst these association/dissociation events, interaction between the C-terminal regions of the Aβ peptide seems to be more favored. Such association and dissociation events occurring in a “trial-and-error” fashion may be an important requirement for the formation of well-organized amyloid fibrils.  相似文献   

8.
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact beta2-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.  相似文献   

9.
The Alzheimer beta-amyloid peptide (Abeta) and a fragment of the prion protein have the capacity of forming amyloid-like fibrils when incubated under physiological conditions in vitro. Here we show that a small amyloid ligand, RO-47-1816/001, enhances this process severalfold by binding to amyloid molecules and apparently promote formation of the peptide-to-peptide bonds that join the monomers of the amyloid fibrils. This effect could be antagonized by other ligands, including analogues of RO-47-1816/001, as well as the structurally unrelated ligand Congo red. Analogues of RO-47-1816/001 with low affinity for amyloid did not display any antagonistic effect. In conclusion, these data suggest that synthetic molecules, and possibly also small natural substances present in the brain, may act in a chaperone-like fashion, promoting Abeta polymerization and growth of amyloid fibrils in vitro and possibly also in vivo. Furthermore, we demonstrate that small organic molecules can be used to inhibit the action of amyloid-enhancing compounds.  相似文献   

10.
The formation of amyloid fibrils is considered to be an important step in the aetiology of Alzheimer's disease and other amyloidoses. Fibril formation in vitro has been shown to depend on many different factors including modifications to the amino acid profile of fibrillogenic peptides and interactions with both large and small molecules of physiological significance. How these factors might contribute to amyloid fibril formation in vivo is not clear as very little is known about the promotion of fibril formation in undersaturated solutions of amyloidogenic peptides. We have used thioflavin T fluorescence and reverse phase high performance liquid chromatography to show that ATP, and in particular AlATP, promoted the formation of thioflavin T-reactive fibrils of beta amyloid and, an unrelated amyloidogenic peptide, amylin. Evidence is presented that induction of fibril formation followed the complexation of AIATP by one or more monomers of the respective peptide. However, the complex formed could not be identified directly and it is suggested that AlATP might be acting as a chaperone in the assembly of amyloid fibrils. The effect of AlATP was not mimicked by either AlADP or AlAMP. However, it was blocked by suramin, a P2 ATP receptor antagonist, and this has prompted us to speculate that the precursor proteins to beta amyloid and amylin may be substrates or receptors for ATP in vivo.  相似文献   

11.
The aggregation of proteins into amyloid fibrils is the hallmark feature of a group of late-onset degenerative diseases including Alzheimer, Parkinson, and prion diseases. We report here that microcin E492, a peptide naturally produced by Klebsiella pneumoniae that kills bacteria by forming pores in the cytoplasmic membrane, assembles in vitro into amyloid-like fibrils. The fibrils have the same structural, morphological, tinctorial, and biochemical properties as the aggregates observed in the disease conditions. In addition, we found that amyloid formation also occurs in vivo where it is associated with a loss of toxicity of the protein. The finding that microcin E492 naturally exists both as functional toxic pores and as harmless fibrils suggests that protein aggregation into amyloid fibrils is an evolutionarily conserved property of proteins that can be successfully employed by bacteria to fulfill specific physiological needs.  相似文献   

12.
To date, over 20 peptides or proteins have been identified that can form amyloid fibrils in the body and are thought to cause disease. The mechanism by which amyloid peptides cause the cytotoxicity observed and disease is not understood. However, one of the major hypotheses is that amyloid peptides cause membrane perturbation. Hence, we have studied the interaction between lipid bilayers and the 37 amino acid residue polypeptide amylin, which is the primary constituent of the pancreatic amyloid associated with type 2 diabetes. Using a dye release assay we confirmed that the amyloidogenic human amylin peptide causes membrane disruption; however, time-lapse atomic force microscopy revealed that this did not occur by the formation of defined pores. On the contrary, the peptide induced the formation of small defects spreading over the lipid surface. We also found that rat amylin, which has 84% identity with human amylin but cannot form amyloid fibrils, could also induce similar lesions to supported lipid bilayers. The effect, however, for rat amylin but not human amylin, was inhibited under high ionic conditions. These data provide an alternative theory to pore formation, and how amyloid peptides may cause membrane disruption and possibly cytotoxicity.  相似文献   

13.
Accumulation of toxic amyloid oligomers, a key feature in the pathogenesis of amyloid-related diseases, results from an imbalance between generation and clearance of amyloidogenic proteins. Cell biology has brought to light the key roles of multivesicular endosomes (MVEs) and their intraluminal vesicles (ILVs), which can be secreted as exosomes, in amyloid generation and clearance. To better understand these roles, we have investigated a relevant physiological model of amyloid formation in pigment cells. These cells have tuned their endosomes to optimize the formation of functional amyloid fibrils from the premelanosome protein (PMEL) and to avoid potential accumulation of toxic species. The functional amyloids derived from PMEL reveal striking analogies with the generation of Aβ peptides. We have recently strengthened these analogies using extracellular vesicles as reporters of the endosomal processes that regulate PMEL melanogenesis. We have shown that in pigmented cells, apolipoprotein E (ApoE) is associated with ILVs and exosomes, and regulates the formation of PMEL amyloid fibrils in endosomes. This process secures the generation of amyloid fibrils by exploiting ILVs as amyloid-nucleating platforms. This physiological model of amyloidogenesis could shed new light on the roles of MVEs and exosomes in conditions with pathological amyloid metabolism, such as Alzheimer’s disease.  相似文献   

14.
Protein aggregation and amyloid formation are associated with both pathological conditions in humans such as Alzheimer's disease and native functions such as peptide hormone storage in the pituitary secretory granules in mammals. Here, we studied amyloid fibrils formation by three neuropeptides namely physalaemin, kassinin and substance P of tachykinin family using biophysical techniques including circular dichroism, thioflavin T, congo red binding and microscopy. All these neuropeptides under study have significant sequence similarity with Aβ(25-35) that is known to form neurotoxic amyloids. We found that all these peptides formed amyloid-like fibrils in vitro in the presence of heparin, and these amyloids were found to be nontoxic in neuronal cells. However, the extent of amyloid formation, structural transition, and morphology were different depending on the primary sequences of peptide. When Aβ(25-35) and Aβ40 were incubated with each of these neuropeptides in 1:1 ratio, a drastic increase in amyloid growths were observed compared to that of individual peptides suggesting that co-aggregation of Aβ and these neuropeptides. The electron micrographs of these co-aggregates were dissimilar when compared with individual peptide fibrils further supporting the possible incorporation of these neuropeptides in Aβ amyloid fibrils. Further, the fibrils of these neuropeptides can seed the fibrils formation of Aβ40 and reduced the toxicity of preformed Aβ fibrils. The present study of amyloid formation by tachykinin neuropeptides is not only providing an understanding of the mechanism of amyloid fibril formation in general, but also offering plausible explanation that why these neuropeptide might reduce the cytotoxicity associated with Alzheimer's disease related amyloids.  相似文献   

15.
Nilsson MR  Dobson CM 《Biochemistry》2003,42(2):375-382
Lactoferrin has previously been identified in amyloid deposits in the cornea, seminal vesicles, and brain. We report in this paper a highly amyloidogenic region of lactoferrin (sequence of NAGDVAFV). This region was initially identified by sequence comparison with medin, a 5.5 kDa amyloidogenic fragment derived from lactadherin. Subsequent characterization revealed that this peptide forms amyloid fibrils at pH 7.4 when incubated at 37 degrees C. Furthermore, although full-length lactoferrin does not by itself form amyloid fibrils, the protein does bind to the peptide fibrils as revealed by an increase in thioflavin T fluorescence and the presence of enlarged fibrils by transmission electron microscopy and polarized light microscopy. The binding of lactoferrin is a selective interaction with the NAGDVAFV fibrils. Lactoferrin does not bind to insulin or lysozyme fibrils, and the NAGDVAFV fibrils do not bind to soluble insulin or lysozyme. The lactoferrin appears to coat the peptide fibril surface to form mixed peptide/protein fibrils, but again there is no evidence for the formation of lactoferrin-only fibrils. This interaction, therefore, seems to involve selective binding rather than conventional seeding of fibril formation. We suggest that such a process could be generally important in the formation of amyloid fibrils in vivo since the identification of both full-length protein and protein fragments is common in ex vivo amyloid deposits.  相似文献   

16.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

17.
BackgroundSemen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP) fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils.

Methodology and Principal Findings

Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2), can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT) and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM), in the presence or absence of EP2. Circular dichroism (CD) spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells.

Conclusions and Significance

Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection.  相似文献   

18.
The process of amyloid fibril formation by the human calcitonin hormone is associated with medullary thyroid carcinoma. Based on the effect of pH on the fibrillization of human calcitonin, the analysis of conformationally constrained analogues of the hormone, and our suggestion regarding the role of aromatic residues in the process of amyloid fibril formation, we studied the ability of a short aromatic charged peptide fragment of calcitonin (NH(2)-DFNKF-COOH) to form amyloid fibrils. Here, using structural and biophysical analysis, we clearly demonstrate the ability of this short peptide to form well ordered amyloid fibrils. A shorter truncated tetrapeptide, NH(2)-DFNK-COOH, also formed fibrils albeit less ordered than those formed by the pentapeptide. We could not detect amyloid fibril formation by the NH(2)-FNKF-COOH tetrapeptide, the NH(2)-DFN-COOH tripeptide, or the NH(2)-DANKA-COOH phenylalanine to the alanine analogue of the pentapeptide. The formation of amyloid fibrils by rather hydrophilic peptides is quite striking, because it was speculated that hydrophobic interactions might play a key role in amyloid formation. This is the first reported case of fibril formation by a peptide as short as a tetrapeptide and one of very few cases of amyloid formation by pentapeptides. Because the aromatic nature seems to be the only common property of the various very short amyloid-forming peptides, it further supports our hypothesis on the role of aromatic interactions in the process of amyloid fibril formation.  相似文献   

19.
Meng F  Abedini A  Song B  Raleigh DP 《Biochemistry》2007,46(43):12091-12099
Amyloid formation has been implicated in a wide range of human diseases including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. In type 2 diabetes, islet amyloid polypeptide (IAPP, also known as amylin) forms cytotoxic amyloid deposits in the pancreas, and these are believed to contribute to the pathology of the disease. The mechanism of islet amyloid formation is not understood; however, recent proposals have invoked a role for incompletely processed proIAPP. In this model, incompletely processed proIAPP containing the N-terminal pro region is excreted and binds to heparan sulfate proteoglycans (HSPGs) of the basement membrane thereby establishing a high local concentration which can act as a seed for amyloid formation. Here we report biophysical proof-of-principle experiments designed to test the viability of this model. The model predicts that interactions with HSPGs should accelerate amyloid formation by the proIAPP processing intermediate, and this is indeed what is observed. Interaction with heparan sulfate leads to the rapid formation of an intermediate state with partial helical content which then converts, on a slower time scale, to amyloid fibrils. TEM shows that fibrils formed by the proIAPP processing intermediate in the presence and in the absence of heparan sulfate have the classic features of amyloid. Fibrils formed by the proIAPP processing intermediate are competent to seed amyloid formation by mature IAPP. The seeding experiments support a second major premise of the model, namely, that fibrils formed by the processing intermediate are capable of seeding amyloid formation by the mature peptide.  相似文献   

20.
Atomic force microscopy has been employed to investigate the structural organization of amyloid fibrils produced in vitro from three very different polypeptide sequences. The systems investigated are a 10-residue peptide derived from the sequence of transthyretin, the 90-residue SH3 domain of bovine phosphatidylinositol-3'-kinase, and human wild-type lysozyme, a 130-residue protein containing four disulfide bridges. The results demonstrate distinct similarities between the structures formed by the different classes of fibrils despite the contrasting nature of the polypeptide species involved. SH3 and lysozyme fibrils consist typically of four protofilaments, exhibiting a left-handed twist along the fibril axis. The substructure of TTR(10-19) fibrils is not resolved by atomic force microscopy and their uniform appearance is suggestive of a regular self-association of very thin filaments. We propose that the exact number and orientation of protofilaments within amyloid fibrils is dictated by packing of the regions of the polypeptide chains that are not directly involved in formation of the cross-beta core of the fibrils. The results obtained for these proteins, none of which is directly associated with any human disease, are closely similar to those of disease-related amyloid fibrils, supporting the concept that amyloid is a generic structure of polypeptide chains. The detailed architecture of an individual fibril, however, depends on the manner in which the protofilaments assemble into the fibrillar structure, which in turn is dependent on the sequence of the polypeptide and the conditions under which the fibril is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号