首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAPK-activated protein kinase 5 (MK5) was recently identified as a physiological substrate of the atypical MAPK ERK3. Complex formation between ERK3 and MK5 results in phosphorylation and activation of MK5, concomitant stabilization of ERK3, and the nuclear exclusion of both proteins. However, ablation of ERK3 in HeLa cells using small interfering RNA or in fibroblasts derived from ERK3 null mice reduces the activity of endogenous MK5 by only 50%, suggesting additional mechanisms of MK5 regulation. Here we identify the ERK3-related kinase ERK4 as a bona fide interaction partner of MK5. Binding of ERK4 to MK5 is accompanied by phosphorylation and activation of MK5. Furthermore, complex formation also results in the relocalization of MK5 from nucleus to cytoplasm. However unlike ERK3, ERK4 is a stable protein, and its half-life is not modified by the presence or absence of MK5. Finally, although knock-down of ERK4 protein in HeLa cells reduces endogenous MK5 activity by approximately 50%, a combination of small interfering RNAs targeting both ERK4 and ERK3 causes a further reduction in the MK5 activity by more than 80%. We conclude that MK5 activation is dependent on both ERK3 and ERK4 in these cells and that these atypical MAPKs are both physiological regulators of MK5 activity.  相似文献   

2.
3.
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK), which is regulated by protein stability. However, its function is unknown and no physiological substrates for ERK3 have yet been identified. Here we demonstrate a specific interaction between ERK3 and MAPK-activated protein kinase-5 (MK5). Binding results in nuclear exclusion of both ERK3 and MK5 and is accompanied by ERK3-dependent phosphorylation and activation of MK5 in vitro and in vivo. Endogenous MK5 activity is significantly reduced by siRNA-mediated knockdown of ERK3 and also in fibroblasts derived from ERK3-/- mice. Furthermore, increased levels of ERK3 protein detected during nerve growth factor-induced differentiation of PC12 cells are accompanied by an increase in MK5 activity. Conversely, MK5 depletion causes a dramatic reduction in endogenous ERK3 levels. Our data identify the first physiological protein substrate for ERK3 and suggest a functional link between these kinases in which MK5 is a downstream target of ERK3, while MK5 acts as a chaperone for ERK3. Our findings provide valuable tools to further dissect the regulation and biological roles of both ERK3 and MK5.  相似文献   

4.
5.
The extracellular-regulated kinase (ERK) 4 (MAPK4) and ERK3 (MAPK6) are structurally related atypical MAPKs displaying major differences only in the C-terminal extension. ERK3 is known as an unstable mostly cytoplasmic protein that binds, translocates, and activates the MAPK-activated protein kinase (MK) 5. Here we have investigated the stability and expression of ERK4 and have analyzed its ability to bind, translocate, and activate MK5. We show that, in contrast to ERK3, ERK4 is a stable protein that binds to endogenous MK5. Interaction of ERK4 with MK5 leads to translocation of MK5 to the cytoplasm and to its activation by phosphorylation. In transfected HEK293 cells, where overexpressed catalytically dead ERK3 is able to activate MK5, catalytic activity of ERK4 is necessary for activation of MK5, indicating that ERK4 directly phosphorylates MK5. Interestingly, ERK4 dimerizes and/or oligomerizes with ERK3, suggesting that overexpressed inactive ERK3 recruits active endogenous ERK4 to MK5 for its activation. Hence, ERK3 and ERK4 cooperate in activation of MK5.  相似文献   

6.
7.
Neurotrophin receptors utilize specific adaptor proteins to activate signaling pathways involved in various neuronal functions, such as neurite outgrowth and cytoskeletal remodeling. The Ankyrin-Repeat Rich Membrane Spanning (ARMS)/kinase D-interacting substrate-220 kDa (Kidins220) serves as a unique downstream adaptor protein of Trk receptor tyrosine kinases. To gain insight into the role of ARMS/Kidins220, a yeast two-hybrid screen of a rat dorsal root ganglion library was performed using the C-terminal region of ARMS/Kidins220 as bait. The screen identified a mammalian septin, Septin 5 (Sept5), as an interacting protein. Co-immunoprecipitation using lysates from transiently transfected HEK-293 cells revealed the specific interaction between ARMS/Kidins220 and Sept5. Endogenous ARMS/Kidins220 and Sept5 proteins were colocalized in primary hippocampal neurons and were also predominantly expressed at the plasma membrane and in the tips of growing neurites in nerve growth factor-treated PC12 cells. Mapping of Sept5 domains important for ARMS/Kidins220 binding revealed a highly conserved N-terminal region of Sept5. The direct interaction between ARMS/Kidins220 and Sept5 suggests a possible role of ARMS/Kidins220 as a functional link between neurotrophin receptors and septins to mediate neurotrophin-induced intracellular signaling events, such as neurite outgrowth and cytoskeletal remodeling.  相似文献   

8.
The roles of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A in 5-hydroxytryptamine (5-HT)7 receptor-mediated activation of extracellular-regulated kinase (ERK) were studied in cultured hippocampal neurons and transfected PC12 cells. Activation of ERK by neuronal Gs-coupled receptors has been thought to proceed through a protein kinase A-dependent pathway. In fact we identified coupling of 5-HT7 receptors to activation of adenylyl cyclase and protein kinase A. However, no inhibition of agonist-stimulated ERK activation was found when cells were treated with H-89 and KT5720 at concentrations sufficient to completely inhibit activation of protein kinase A. However, activation of ERK was found to be sensitive to the adenylyl cyclase inhibitor 9-(tetrahydrofuryl)-adenine, suggesting a possible role for a cAMP-guanine nucleotide exchange factor (cAMP-GEF). Co-treatment of cells with 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate, a direct activator of the cAMP-GEFs Epac1 and 2, reversed the inhibition of agonist-stimulated ERK activation induced by adenylyl cyclase inhibition. Additionally, over-expression of Epac1 enhanced 5-HT7 receptor-mediated activation of ERK. These results demonstrate that the activation of ERK mediated by neuronal Gs-coupled receptors can proceed through cAMP-dependent pathways that utilize cAMP-GEFs rather than protein kinase A.  相似文献   

9.
The MAPK-activated protein kinases belong to the Ca2+/calmodulin-dependent protein kinases. Within this group, MK2, MK3, and MK5 constitute three structurally related enzymes with distinct functions. Few genuine substrates for MK5 have been identified, and the only known biological role is in ras-induced senescence and in tumor suppression. Here we demonstrate that activation of cAMP-dependent protein kinase (PKA) or ectopic expression of the catalytic subunit Calpha in PC12 cells results in transient nuclear export of MK5, which requires the kinase activity of both Calpha and MK5 and the ability of Calpha to enter the nucleus. Calpha and MK5, but not MK2, interact in vivo, and Calpha increases the kinase activity of MK5. Moreover, Calpha augments MK5 phosphorylation, but not MK2, whereas MK5 does not seem to phosphorylate Calpha. Activation of PKA can induce actin filament accumulation at the plasma membrane and formation of actin-based filopodia. We demonstrate that small interfering RNA-triggered depletion of MK5 interferes with PKA-induced F-actin rearrangement. Moreover, cytoplasmic expression of an activated MK5 variant is sufficient to mimic PKA-provoked F-actin remodeling. Our results describe a novel interaction between the PKA pathway and MAPK signaling cascades and suggest that MK5, but not MK2, is implicated in PKA-induced microfilament rearrangement.  相似文献   

10.
The cAMP-protein kinase A (PKA) pathway, important in neuronal signaling, is regulated by molecules that bind and target PKA regulatory subunits. Of four regulatory subunits, RIbeta is most abundantly expressed in brain. The RIbeta knockout mouse has defects in hippocampal synaptic plasticity, suggesting a role for RIbeta in learning and memory-related functions. Molecules that interact with or regulate RIbeta are still unknown. We identified the neurofibromatosis 2 tumor suppressor protein merlin (schwannomin), a molecule related to the ezrin-radixin-moesin family of membrane-cytoskeleton linker proteins, as a binding partner for RIbeta. Merlin and RIbeta demonstrated a similar expression pattern in central nervous system neurons and an overlapping subcellular localization in cultured hippocampal neurons and transfected cells. The proteins were coprecipitated from brain lysates by cAMP-agarose and coimmunoprecipited from cellular lysates with specific antibodies. In vitro binding studies verified that the interaction is direct. The interaction appeared to be under conformational regulation and was mediated via the alpha-helical region of merlin. Sequence comparison between merlin and known PKA anchoring proteins identified a conserved alpha-helical PKA anchoring protein motif in merlin. These results identify merlin as the first neuronal binding partner for PKA-RIbeta and suggest a novel function for merlin in connecting neuronal cytoskeleton to PKA signaling.  相似文献   

11.
Exposure of neuronal cells to nanomolar concentrations of oligosaccharide portions of ganglioside GM2 and GT1b stimulates cAMP-dependent protein kinase (PKA) Ca2+/calmodulin-dependent protein kinase II (CaMKII), respectively, in a few seconds suggesting the presence of glyco-receptor-like molecules on the surface of the cells. Both GM2/PKA (GalNAc/PKA) and GT1b/CaMKII signaling cascades induced cytoskeletal actin reorganization through Cdc42 activation leading to filopodia formation within 2 min. Long-term effects of these glyco-signals were facilitation of dendritic differentiation of primary cultured hippocampal neurons and cerebellar Purkinje neurons indicating physiological roles of the signals in neuronal differentiation and maturation.  相似文献   

12.
Extracellular-regulated kinase 3 (ERK3, MAPK6) is an atypical member of the ERKs, lacking the threonine and tyrosine residues in the activation loop, carrying a unique C-terminal extension and being mainly regulated by its own protein stability and/or by autophosphorylation. Here we show that ERK3 specifically interacts with the MAPK-activated protein kinase 5 (MK5 or PRAK) in vitro and in vivo. Expression of ERK3 in mammalian cells leads to nuclear-cytoplasmic translocation and activation of MK5 and to phosphorylation of both ERK3 and MK5. Remarkably, activation of MK5 is independent of ERK3 enzymatic activity, but depends on its own catalytic activity as well as on a region in the C-terminal extension of ERK3. In mouse embryonic development, mRNA expression patterns of ERK3 and MK5 suggest spatiotemporal coexpression of both kinases. Deletion of MK5 leads to strong reduction of ERK3 protein levels and embryonic lethality at about stage E11, where ERK3 expression in wild-type mice is maximum, indicating a role of this signalling module in development.  相似文献   

13.
Increasing evidence implicates cyclin-dependent kinase 5 (Cdk5) in neuronal synaptic function. We searched for Cdk5 substrates in synaptosomal fractions prepared from mouse brains. Mass spectrometric analysis after two-dimensional SDS-PAGE identified several synaptic proteins phosphorylated by Cdk5-p35; one protein identified was Sept5 (CDCrel-1). Although septins were isolated originally as cell division-related proteins in yeast, Sept5 is expressed predominantly in neurons and is implicated in exocytosis. We confirmed that Sept5 is phosphorylated by Cdk5-p35 in vitro and identified Ser17 of adult type Sept5 (Sept5_v1) as a major phosphorylation site. We found that Ser17 of Sept5_v1 is phosphorylated in mouse brains. Coimmunoprecipitation from synaptosomal fractions and glutathione S-transferase-syntaxin-1A pulldown assays of Sept5_v1 expressed in COS-7 cells showed that phosphorylation of Sept5_v1 by Cdk5-p35 decreases the binding to syntaxin-1. These results indicate that the interaction of Sept5 with syntaxin-1 is regulated by the phosphorylation of Sept5_v1 at Ser17 by Cdk5-p35.  相似文献   

14.
Activity-dependent regulation of neuronal events such as cell survival and synaptic plasticity is controlled by increases in neuronal calcium levels. These actions often involve stimulation of intracellular kinase signaling pathways. For example, the mitogen-activated protein kinase, or extracellular signal-regulated kinase (ERK), signaling cascade has increasingly been shown to be important for the induction of gene expression and long term potentiation. However, the mechanisms leading to ERK activation by neuronal calcium are still unclear. In the present study, we describe a protein kinase A (PKA)-dependent signaling pathway that may link neuronal calcium influx to ERKs via the small G-protein, Rap1, and the neuronal Raf isoform, B-Raf. Thus, in PC12 cells, depolarization-mediated calcium influx led to the activation of B-Raf, but not Raf-1, via PKA. Furthermore, depolarization also induced the PKA-dependent stimulation of Rap1 and led to the formation of a Rap1/B-Raf signaling complex. In contrast, depolarization did not lead to the association of Ras with B-Raf. The major action of PKA-dependent Rap1/B-Raf signaling in neuronal cells is the activation of ERKs. Thus, we further show that, in both PC12 cells and hippocampal neurons, depolarization-induced calcium influx stimulates ERK activity in a PKA-dependent manner. Given the fact that both Rap1 and B-Raf are highly expressed in the central nervous system, we suggest that this signaling pathway may regulate a number of activity-dependent neuronal functions.  相似文献   

15.
Extracellular signal-regulated protein kinase (ERK) 5 is a mitogen-activated protein kinase (MAPK) that is activated by dual phosphorylation via a unique MAPK/ERK kinase 5, MEK5. The physiological importance of this signaling cascade is underscored by the early embryonic death caused by the targeted deletion of the erk5 or the mek5 genes in mice. Here, we have found that ERK5 is required for mediating the survival of fibroblasts under basal conditions and in response to sorbitol treatment. Increased Fas ligand (FasL) expression acts as a positive feedback loop to enhance apoptosis of ERK5- or MEK5-deficient cells under conditions of osmotic stress. Compared to wild-type cells, erk5-/- and mek5-/- fibroblasts treated with sorbitol display a reduced protein kinase B (PKB) activity associated with increased Forkhead box O3a (Foxo3a) activity. Based on these results, we conclude that the ERK5 signaling pathway promotes cell survival by downregulating FasL expression via a mechanism that implicates PKB-dependent inhibition of Foxo3a downstream of phosphoinositide 3 kinase.  相似文献   

16.
Role of MAP kinase in neurons   总被引:1,自引:0,他引:1  
Extracellular stimuli such as neurotransmitters, neurotrophins, and growth factors in the brain regulate critical cellular events, including synaptic transmission, neuronal plasticity, morphological differentiation and survival. Although many such stimuli trigger Ser/Thr-kinase and tyrosine-kinase cascades, the extracellular signal-regulated kinases, ERK1 and ERK2, prototypic members of the mitogen-activated protein (MAP) kinase family, are most attractive candidates among protein kinases that mediate morphological differentiation and promote survival in neurons. ERK1 and ERK2 are abundant in the central nervous system (CNS) and are activated during various physiological and pathological events such as brain ischemia and epilepsy. In cultured hippocampal neurons, simulation of glutamate receptors can activate ERK signaling, for which elevation of intracellular Ca2+ is required. In addition, brain-derived neurotrophic factor and growth factors also induce the ERK signaling and here, receptor-coupled tyrosine kinase activation has an association. We describe herein intracellular cascades of ERK signaling through neurotransmitters and neurotrophic factors. Putative functional implications of ERK and other MAP-kinase family members in the central nervous system are give attention.  相似文献   

17.
Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a serine/threonine-directed kinase that is activated following increases in intracellular Ca(2+). CaMKKβ activates Ca(2+)/calmodulin-dependent protein kinase I, Ca(2+)/calmodulin-dependent protein kinase IV, and the AMP-dependent protein kinase in a number of physiological pathways, including learning and memory formation, neuronal differentiation, and regulation of energy balance. Here, we report the novel regulation of CaMKKβ activity by multisite phosphorylation. We identify three phosphorylation sites in the N terminus of CaMKKβ, which regulate its Ca(2+)/calmodulin-independent autonomous activity. We then identify the kinases responsible for these phosphorylations as cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3). In addition to regulation of autonomous activity, we find that phosphorylation of CaMKKβ regulates its half-life. We find that cellular levels of CaMKKβ correlate with CDK5 activity and are regulated developmentally in neurons. Finally, we demonstrate that appropriate phosphorylation of CaMKKβ is critical for its role in neurite development. These results reveal a novel regulatory mechanism for CaMKKβ-dependent signaling cascades.  相似文献   

18.
MAK-V protein kinase (also known as HUNK) was discovered more than decade ago but its functions and molecular mechanisms of action still remain mostly unknown. In an attempt to associate MAK-V with particular chains of molecular events, we searched for proteins interacting with the C-terminal domain of MAK-V protein kinase. We identified synaptopodin as a protein interaction partner for MAK-V and confirmed this interaction in various ways. Because synaptopodin is important for dendritic spine formation and plays a role in synaptic plasticity, our results might have significant impact on future studies for understanding the role of MAK-V in cells of the nervous system.  相似文献   

19.
The NIMA family protein kinases Nek9/Nercc1 and the highly similar Nek6 and Nek7 form a signaling module activated in mitosis, when they are involved in the control of spindle organization and function. Here we report that Nek9, the module upstream kinase, binds to DYNLL/LC8, a highly conserved protein originally described as a component of the dynein complex. LC8 is a dimer that interacts with different proteins and has been suggested to act as a dimerization hub promoting the organization and oligomerization of partially disorganized partners. We find that the interaction of LC8 with Nek9 depends on a (K/R)XTQT motif adjacent to the Nek9 C-terminal coiled coil motif, results in Nek9 multimerization, and increases the rate of Nek9 autoactivation. LC8 binding to Nek9 is regulated by Nek9 activity through the autophosphorylation of Ser(944), a residue immediately N-terminal to the (K/R)XTQT motif. Remarkably, LC8 binding interferes with the interaction of Nek9 with its downstream partner Nek6 as well as with Nek6 activation, thus controlling both processes. Our work sheds light into the control of signal transduction through the module formed by Nek9 and Nek6/7 and uncovers a novel manner in which LC8 can regulate partner physiology by interfering with protein complex formation. We suggest that this and other LC8 functions can be specifically regulated by partner phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号