首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti-TGF-β-neutralizing antibody, excluding a central role of TGF-β in this process. In conclusion, PSCs promoted EMT in pancreatic cancer cells suggesting a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells.  相似文献   

2.
3.
Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells   总被引:1,自引:0,他引:1  
Galiellalactone is a potent and specific inhibitor of STAT3 signaling which has been shown to possess growth inhibitory effects on prostate cancer cells expressing active STAT3. In this study we aimed to investigate the effect of galiellalactone on prostate cancer stem cell-like cells. We explored the expression of aldehyde dehydrogenase (ALDH) as a marker for cancer stem cell-like cells in different human prostate cancer cell lines and the effects of galiellalactone on ALDH expressing (ALDH+) prostate cancer cells. ALDH+ subpopulations were detected and isolated from the human prostate cancer cell lines DU145 and long-term IL-6 stimulated LNCaP cells using ALDEFLUOR® assay and flow cytometry. In contrast to ALDH− cells, ALDH+ prostate cancer cells showed cancer stem cell-like characteristics such as increased self-renewing and colony forming capacity and tumorigenicity. In addition, ALDH+ cells showed an increased expression of putative prostate cancer stem cell markers (CD44 and integrin α2β1). Furthermore, ALDH+ cells expressed phosphorylated STAT3. Galiellalactone treatment decreased the proportion of ALDH+ prostate cancer cells and induced apoptosis of ALDH+ cells. The gene expression of ALDH1A1 was downregulated in vivo in galiellalactone treated DU145 xenografts. These findings emphasize that targeting the STAT3 pathway in prostate cancer cells, including prostate cancer stem cell-like cells, is a promising therapeutic approach and that galiellalactone is an interesting compound for the development of future prostate cancer drugs.  相似文献   

4.
Chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are characterized by extensive fibrosis. Importantly, in PDAC, this results in poor vascularization and impaired drug delivery to the cancer cells. Therefore, the combined targeting of pancreatic tumor stroma and chemotherapy should enhance response rates, but the negative outcome of a recent phase III clinical trial for the combination of chemotherapy and hedgehog pathway inhibition suggests that other means also need to be considered. Emerging data indicate that elimination of cancer stem cells as the root of the cancer is of pivotal importance for efficient treatment of pancreatic cancer. Recently, we demonstrated in a highly relevant preclinical mouse model for primary pancreatic cancers that the combination of cancer stem cell-targeting strategies in combination with a stroma-targeting agent, such as a hedgehog pathway inhibitor and chemotherapy, results in significantly enhanced long-term and progression-free survival. In the present study, we demonstrate mechanistically that Nodal-expressing pancreatic stellate cells are an important component of the tumor stroma for creating a paracrine niche for pancreatic cancer stem cells. Secretion of the embryonic morphogens Nodal/Activin by pancreatic stellate cells promoted in vitro sphere formation and invasiveness of pancreatic cancer stem cells in an Alk4-dependent manner. These data imply that the pancreatic cancer stem cell phenotype is promoted by paracrine Nodal/Activin signaling at the tumor-stroma interface. Therefore, targeting the tumor microenvironment is not only able to improve drug delivery but, even more importantly, destroys the cancer stem cell niche and, therefore, should be an integral part of cancer stem cell-based treatment strategies.  相似文献   

5.
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells isolated from adipose tissue and have the ability to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Despite their great therapeutic potentials, previous studies showed that ADSCs could enhance the proliferation and metastatic potential of breast cancer cells (BCCs). In this study, we found that ADSCs fused with BCCs spontaneously, while breast cancer stem cell (CSC) markers CD44+CD24-/lowEpCAM+ were enriched in this fusion population. We further assessed the fusion hybrid by multicolor DNA FISH and mouse xenograft assays. Only single nucleus was observed in the fusion hybrid, confirming that it was a synkaryon. In vivo mouse xenograft assay indicated that the tumorigenic potential of the fusion hybrid was significantly higher than that of the parent tumorigenic triple-negative BCC line MDA-MB-231. We had compared the fusion efficiency between two BCC lines, the CD44-rich MDA-MB-231 and the CD44-poor MCF-7, with ADSCs. Interestingly, we found that the fusion efficiency was much higher between MDA-MB-231 and ADSCs, suggesting that a potential mechanism of cell fusion may lie in the dissimilarity between these two cell lines. The cell fusion efficiency was hampered by knocking down the CD44. Altogether, our findings suggest that CD44-mediated cell fusion could be a potential mechanism for generating CSCs.  相似文献   

6.
7.
Pancreatic ductal adenocarcinoma is one of the most aggressive solid tumours of the pancreas, characterised by a five-year survival rate less than 8%. Recent reports that pancreatic cancer stem cells (PCSCs) contribute to the tumorigenesis, progression, and chemoresistance of pancreatic cancer have prompted the investigation of new therapeutic approaches able to directly target PCSCs. In the present paper the non-cancer related drugs that have been proposed to target CSCs that could potentially combat pancreatic cancer are reviewed and evaluated. The role of some pathways and deregulated proteins in PCSCs as new therapeutic targets are also discussed with a focus on selected specific inhibitors. Finally, advances in the development of nanoparticles for targeting PCSCs and site-specific drug delivery are highlighted, and their limitations considered.  相似文献   

8.
近年来,通过培养小鼠精原干细胞(spermatogonial stem cells,SSCs)获得了胚胎干细胞样细胞(,embryonic stem cell-like cells,ES样细胞).这些研究表明小鼠精原干细胞不仅具备特异分化为精子的干细胞潜能,而且具备胚胎干细胞(embryonic stem cell,ES)分化为三胚层的多向分化潜能.因此.这将有助于研究干细胞的分化调控机制,并且这些研究成果延伸至人类精原干细胞,也将为再生医学获取特殊的胚胎干细胞样细胞或特异分化的精子细胞开辟了蹊径.  相似文献   

9.
Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment.  相似文献   

10.
Pancreatic cancer is characterized by excessive desmoplastic reaction and by a hypoxic microenvironment within the solid tumor mass. Chronic pancreatitis is also characterized by fibrosis and hypoxia. Fibroblasts in the area of fibrosis in these pathological settings are now recognized as activated pancreatic stellate cells (PSCs). Recent studies have suggested that a hypoxic environment concomitantly exists not only in pancreatic cancer cells but also in surrounding PSCs. This study aimed to clarify whether hypoxia affected the cell functions in PSCs. Human PSCs were isolated and cultured under normoxia (21% O(2)) or hypoxia (1% O(2)). We examined the effects of hypoxia and conditioned media of hypoxia-treated PSCs on cell functions in PSCs and in human umbilical vein endothelial cells. Hypoxia induced migration, type I collagen expression, and vascular endothelial growth factor (VEGF) production in PSCs. Conditioned media of hypoxia-treated PSCs induced migration of PSCs, which was inhibited by anti-VEGF antibody but not by antibody against hepatocyte growth factor. Conditioned media of hypoxia-treated PSCs induced endothelial cell proliferation, migration, and angiogenesis in vitro and in vivo. PSCs expressed several angiogenesis-regulating molecules including VEGF receptors, angiopoietin-1, and Tie-2. In conclusion, hypoxia induced profibrogenic and proangiogenic responses in PSCs. In addition to their established profibrogenic roles, PSCs might play proangiogenic roles during the development of pancreatic fibrosis, where they are subjected to hypoxia.  相似文献   

11.
Pancreatic cancer continues to be a malignancy with few therapeutic options. The majority of patients that present for an evaluation have locally advanced or metastatic disease that is incurable by surgical approaches. Chemotherapy and radiotherapy resistance of pancreatic adenocarcinomas limits the efficacy of these therapeutic approaches. Recent evidence supports the existence of human pancreatic cancer stem cells, which appear to drive tumor initiation and progression and are particularly resistant to cell death induced by radiation or chemotherapy. Understanding the mechanisms of pancreatic cancer stem cell self‐renewal and resistance to standard therapies may lead to new, more effective therapies to treat this dismal disease. J. Cell. Biochem. 107: 40–45, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease.  相似文献   

13.
Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Ex-pression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound heal-ing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator.  相似文献   

14.
15.
Pancreatic cancer(PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understandingof pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells(CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on Dcl K1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC.  相似文献   

16.
The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial–mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.  相似文献   

17.
Proliferation and matrix synthesis by activated pancreatic stellate cells (PSC) participate in the development of chronic pancreatitis. Apoptosis of PSC may terminate this process but has not yet been studied in this particular cell type and was the aim of the present study. PSC were isolated from rat pancreas and characterized for expression of glial fibrillary acidic protein, alpha-smooth muscle actin, CD95, and tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) receptors. Apoptosis was determined by TdT-UTP nick end-labeling reaction, annexin V binding, and caspase-8 activation. Both CD95L and TRAIL induced apoptosis in PSC. The apoptotic response was minor in PSC cultured for 7 days but increased markedly thereafter. Sensitization of PSC with culture duration was accompanied by increased expression of CD95 and TRAIL receptor 2 and no alterations of Flip expression or protein kinase B phosphorylation but was paralleled by the appearance of a COOH-terminal cleavage product of receptor-interacting protein. PSC apoptosis was also induced by PK-11195, a ligand of the peripheral benzodiazepine receptor. PSC apoptosis may be important in terminating the wound-healing response after pancreas injury and exhibits features distinct from apoptosis induction in hepatic stellate cells.  相似文献   

18.
胰腺纤维化是慢性胰腺炎(chronic pancreatitis,CP)和胰腺癌主要的病理学特征,活化的胰腺星状细胞(pancreatic stellate cells,PSCs)是公认的致胰腺纤维化的主要效应细胞。PSCs的活化涉及到几个重要的信号转导通路:有丝分裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)、磷酯酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)=、Smad信号转导蛋白、过氧化物酶体增生物激活受体-γ(PPAR-γ)、Rho-ROCK等细胞内信号途径。探讨这些信号通路在胰腺纤维化中所起的作用对慢性胰腺炎、胰腺癌及糖尿病的治疗有重要意义。现就与PSCs激活有关的信号通路的研究结合最新进展作一综述。  相似文献   

19.
Pancreatic adenocarcinoma is characterized by an intense desmoplastic reaction that surrounds the tumor. Pancreatic stellate cells (PSCs) are thought to be responsible for production of this extracellular matrix. When activated, PSCs have a myofibroblast phenotype and produce not only components of the extracellular matrix including collagen, fibronectin, and laminin, but also matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). Since PSCs are found in the stroma surrounding human pancreatic adenocarcinoma, we postulate that pancreatic cancer could impact PSC proliferation and TIMP-1 production. Rat PSCs were isolated and cultured. Isolated PSCs were exposed to PANC-1 conditioned medium (CM) and proliferation, activation of the mitogen-activated protein (MAP) kinase pathway, and TIMP-1 gene induction were determined. Exposure to PANC-1 CM increased PSC DNA synthesis, cell number, and TIMP-1 mRNA (real-time PCR) as well as activating the extracellular-regulated kinase (ERK) 1/2. Inhibition of ERK 1/2 phosphorylation (U0126) prevented the increases in growth and TIMP-1 expression. PANC-1 CM stimulates PSC proliferation and TIMP-1 through the MAP kinase (ERK 1/2) pathway.  相似文献   

20.
Pancreatic stellate cells (PSCs) play a central role in development of pancreatic fibrosis. In chronic pancreatitis, pancreatic tissue pressure is higher than that of the normal pancreas. We here evaluate the effects of pressure on the activation of rat PSCs. PSCs were isolated from the pancreas of Wistar rat using collagenase digestion and centrifugation with Nycodenz gradient. Pressure was applied to cultured rat PSCs by adding compressed helium gas into the pressure-loading apparatus to raise the internal pressure. Cell proliferation rate was assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation. MAPK protein levels and alpha-smooth muscle actin (alpha-SMA) expression were evaluated by Western blot analysis. Concentration of activated transforming growth factor-beta1 (TGF-beta1) secreted from PSCs into culture medium was determined by ELISA. Collagen type I mRNA expression and collagen secretion were assessed by quantitative PCR and Sirius red dye binding assay, respectively. Application of pressure significantly increased BrdU incorporation and alpha-SMA expression. In addition, pressure rapidly increased the phosphorylation of p44/42 and p38 MAPK. Treatment of PSCs with an MEK inhibitor and p38 MAPK inhibitor suppressed pressure-induced cell proliferation and alpha-SMA expression, respectively. Moreover, pressure significantly promoted activated TGF-beta1 secretion, collagen type I mRNA expression, and collagen secretion. Our results demonstrate that pressure itself activates rat PSCs and suggest that increased pancreatic tissue pressure may accelerate the development of pancreatic fibrosis in chronic pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号