首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ants dominate many terrestrial ecosystems, yet we know little about their nutritional physiology and ecology. While traditionally viewed as predators and scavengers, recent isotopic studies revealed that many dominant ant species are functional herbivores. As with other insects with nitrogen-poor diets, it is hypothesized that these ants rely on symbiotic bacteria for nutritional supplementation. In this study, we used cloning and 16S sequencing to further characterize the bacterial flora of several herbivorous ants, while also examining the beta diversity of bacterial communities within and between ant species from different trophic levels. Through estimating phylogenetic overlap between these communities, we tested the hypothesis that ecologically or phylogenetically similar groups of ants harbor similar microbial flora. Our findings reveal: (i) clear differences in bacterial communities harbored by predatory and herbivorous ants; (ii) notable similarities among communities from distantly related herbivorous ants and (iii) similar communities shared by different predatory army ant species. Focusing on one herbivorous ant tribe, the Cephalotini, we detected five major bacterial taxa that likely represent the core microbiota. Metabolic functions of bacterial relatives suggest that these microbes may play roles in fixing, recycling, or upgrading nitrogen. Overall, our findings reveal that similar microbial communities are harbored by ants from similar trophic niches and, to a greater extent, by related ants from the same colonies, species, genera, and tribes. These trends hint at coevolved histories between ants and microbes, suggesting new possibilities for roles of bacteria in the evolution of both herbivores and carnivores from the ant family Formicidae.  相似文献   

2.
Ants are a hugely diverse family of eusocial insects that dominate terrestrial ecosystems all over the planet. Did mutualistic gut microbes help ants to achieve their diversity and ecological dominance? Initial studies suggested the potential for widespread convergence in ant gut bacterial communities based on dietary niche, but it now seems possible that dedicated bacterial symbionts are restricted to a minority of ant lineages (Russell et al., 2017). Nevertheless, as most ants are omnivores, the evidence so far has suggested a broad, positive correlation between the evolution of dietary specialization and ant investment in nutrient‐provisioning gut bacteria. In this issue of Molecular Ecology, Sapountzis et al. (2019) and Rubin et al. (2019) examine the evolution of gut bacterial communities in two iconic ant taxa—the attine fungus farmers and the Pseudomyrmex plant bodyguards, respectively—in a comparative context. By comparing gut bacteria between ant species of differing dietary specialization within each taxon, these studies demonstrate a hint of convergence in the midst of widespread apparent constraints. These results raise numerous interesting questions about the nature of these apparent constraints and whether they are causes or consequences of varying investment by ants to mutualism with their gut microbes.  相似文献   

3.
Symbiotic bacteria play important roles in the biology of their arthropod hosts. Yet the microbiota of many diverse and influential groups remain understudied, resulting in a paucity of information on the fidelities and histories of these associations. Motivated by prior findings from a smaller scale, 16S rRNA‐based study, we conducted a broad phylogenetic and geographic survey of microbial communities in the ecologically dominant New World army ants (Formicidae: Dorylinae). Amplicon sequencing of the 16S rRNA gene across 28 species spanning the five New World genera showed that the microbial communities of army ants consist of very few common and abundant bacterial species. The two most abundant microbes, referred to as Unclassified Firmicutes and Unclassified Entomoplasmatales, appear to be specialized army ant associates that dominate microbial communities in the gut lumen of three host genera, Eciton, Labidus and Nomamyrmex. Both are present in other army ant genera, including those from the Old World, suggesting that army ant symbioses date back to the Cretaceous. Extensive sequencing of bacterial protein‐coding genes revealed multiple strains of these symbionts coexisting within colonies, but seldom within the same individual ant. Bacterial strains formed multiple host species‐specific lineages on phylogenies, which often grouped strains from distant geographic locations. These patterns deviate from those seen in other social insects and raise intriguing questions about the influence of army ant colony swarm‐founding and within‐colony genetic diversity on strain coexistence, and the effects of hosting a diverse suite of symbiont strains on colony ecology.  相似文献   

4.
Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated. Varying degrees of nest sharing between Megalomyrmex social parasites (Solenopsidini) and their fungus‐growing ant hosts (Attini) from the genera Cyphomyrmex, Trachymyrmex and Sericomyrmex allowed us to address this question, as both ant lineages rely on the same fungal diet, interact in varying intensities and are distantly related. We used tag‐encoded FLX 454 pyrosequencing and diagnostic PCR to map bacterial symbiont diversity across the Megalomyrmex phylogenetic tree, which also contains free‐living generalist predators. We show that social parasites and hosts share a subset of bacterial symbionts, primarily consisting of Entomoplasmatales, Bartonellaceae, Acinetobacter, Wolbachia and Pseudonocardia and that Entomoplasmatales and Bartonellaceae can co‐infect specifically associated combinations of hosts and social parasites with identical 16S rRNA genotypes. We reconstructed in more detail the population‐level infection dynamics for Entomoplasmatales and Bartonellaceae in Megalomyrmex symmetochus guest ants and their Sericomyrmex amabilis hosts. We further assessed the stability of the bacterial communities through a diet manipulation experiment and evaluated possible transmission modes in shared nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional benefits from bacterial symbiont transfer even when they are not closely related.  相似文献   

5.
Acacia‐ant mutualists in the genus Pseudomyrmex nest obligately in acacia plants and, as we show through stable isotope analysis, feed at a remarkably low trophic level. Insects with diets such as these sometimes depend on bacterial symbionts for nutritional enrichment. We, therefore, examine the bacterial communities associated with acacia‐ants in order to determine whether they host bacterial partners likely to contribute to their nutrition. Despite large differences in trophic position, acacia‐ants and related species with generalized diets do not host distinct bacterial taxa. However, we find that a small number of previously undescribed bacterial taxa do differ in relative abundance between acacia‐ants and generalists, including several Acetobacteraceae and Nocardiaceae lineages related to common insect associates. Comparisons with an herbivorous generalist, a parasite that feeds on acacias and a mutualistic species with a generalized diet show that trophic level is likely responsible for these small differences in bacterial community structure. While we did not experimentally test for a nutritional benefit to hosts of these bacterial lineages, metagenomic analysis reveals a Bartonella relative with an intact nitrogen‐recycling pathway widespread across Pseudomyrmex mutualists and generalists. This taxon may be contributing to nitrogen enrichment of its ant hosts through urease activity and, concordant with an obligately host‐associated lifestyle, appears to be experiencing genomewide relaxed selection. The lack of distinctiveness in bacterial communities across trophic level in this group of ants shows a remarkable ability to adjust to varied diets, possibly with assistance from these diverse ant‐specific bacterial lineages.  相似文献   

6.
Symbiotic bacteria often help their hosts acquire nutrients from their diet, showing trends of co-evolution and independent acquisition by hosts from the same trophic levels. While these trends hint at important roles for biotic factors, the effects of the abiotic environment on symbiotic community composition remain comparably understudied. In this investigation, we examined the influence of abiotic and biotic factors on the gut bacterial communities of fish from different taxa, trophic levels and habitats. Phylogenetic and statistical analyses of 25 16S rRNA libraries revealed that salinity, trophic level and possibly host phylogeny shape the composition of fish gut bacteria. When analysed alongside bacterial communities from other environments, fish gut communities typically clustered with gut communities from mammals and insects. Similar consideration of individual phylotypes (vs. communities) revealed evolutionary ties between fish gut microbes and symbionts of animals, as many of the bacteria from the guts of herbivorous fish were closely related to those from mammals. Our results indicate that fish harbour more specialized gut communities than previously recognized. They also highlight a trend of convergent acquisition of similar bacterial communities by fish and mammals, raising the possibility that fish were the first to evolve symbioses resembling those found among extant gut fermenting mammals.  相似文献   

7.
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high‐throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long‐term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.  相似文献   

8.
Living in close association with other organisms has proven to be a widespread and successful strategy in nature. Some communities are completely driven by symbiotic associations and therefore, intimate relationships among the partners can be expected. Here, we analyzed in‐depth the food web of a particularly rich community of arthropods found in strict association with European red wood ants (Formica rufa group). We studied the trophic links between different ant‐associated myrmecophiles and food sources associated with the host ant, but also tested predator–prey links among myrmecophiles themselves. Our approach combined direct feeding tests and stable carbon and nitrogen isotope analyses for a large number of myrmecophiles. The results of the direct feeding tests reveal a complex food web. Most myrmecophiles were found to parasitize on ant brood. Moreover, we encountered multiple trophic predator– prey links among the myrmecophiles. The results of the stable isotope analyses complement these findings and indicate the existence of multiple trophic levels and trophic isotopic niche compartmentalization. δ15N values were strongly correlated with the trophic levels based on the direct tests, reflecting that δ15N values of myrmecophiles increased with higher trophic levels. This strong correlation underlines the strength of stable isotopes as a powerful tool to assess trophic levels. In addition, the stable isotope data suggest that most species only facultatively prey on ant brood. The presence of numerous trophic interactions among symbionts clearly contrasts with the traditional view of social insects nests as offering an enemy‐free space for symbionts. Interestingly, the ant host can indirectly benefit from these interactions because brood predators are also preyed upon by other myrmecophiles. Overall, this study provides unique insights into the complex interactions in a small symbiont microcosm system and suggests that the interactions between host and symbiont might be mediated by other symbionts in the same community.  相似文献   

9.
The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause–effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low‐nitrogen diets and specialized symbioses appear conserved and ancient. To address whether nitrogen‐provisioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile – an invasive species that has transitioned towards greater consumption of sugar‐rich, nitrogen‐poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. Two, a Lactobacillus and an Acetobacteraceae species, were shared between native and introduced populations. The other, a Rickettsia, was found only in two introduced supercolonies. Across an eight‐year period of trophic reduction in one introduced population, we found no change in symbionts, arguing against a relationship between natural dietary change and microbiome composition. Overall, our findings thus argue against major changes in symbiotic bacteria in association with the invasion and trophic shift of L. humile. In addition, genome content from close relatives of the identified symbionts suggests that just one can synthesize most essential amino acids; this bacterium was only modestly abundant in introduced populations, providing little support for a major role of nitrogen‐provisioning symbioses in Argentine ant's dietary shift.  相似文献   

10.
The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.  相似文献   

11.
Army ants and their arthropod symbionts represent one of the most species‐rich animal associations on Earth, and constitute a fascinating example of diverse host–symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant‐symbiont communities more broadly, and to obtain novel insights into co‐evolutionary and ecological dynamics in species‐rich host–symbiont systems.  相似文献   

12.
We are only beginning to understand the depth and breadth of microbial associations across the eukaryotic tree of life. Reliably assessing bacterial diversity is a key challenge, and next-generation sequencing approaches are facilitating this endeavor. In this study, we used 16S rRNA amplicon pyrosequencing to survey microbial diversity in ants. We compared 454 libraries with Sanger-sequenced clone libraries as well as cultivation of live bacteria. Pyrosequencing yielded 95,656 bacterial 16S rRNA reads from 19 samples derived from four colonies of one ant species. The most dominant bacterial orders in the microbiome of the turtle ant Cephalotes varians were Rhizobiales, Burkholderiales, Opitutales, Xanthomonadales, and Campylobacterales, as revealed through both 454 sequencing and cloning. Even after stringent quality filtering, pyrosequencing recovered 445 microbe operational taxonomic units (OTUs) not detected with traditional techniques. In comparing bacterial communities associated with specific tissues, we found that gut tissues had significantly higher diversity than nongut tissues, and many of the OTUs identified from these groups clustered within ant-specific lineages, indicating a deep coevolutionary history of Cephalotes ants and their associated microbes. These lineages likely function as nutritional symbionts. One of four ant colonies investigated was infected with a Spiroplasma sp. (order Entomoplasmatales), a potential ant pathogen. Our work shows that the microbiome associated with Cephalotes varians is dominated by a few dozen bacterial lineages and that 454 sequencing is a cost-efficient tool to screen ant symbiont diversity.  相似文献   

13.
1. The characterisation of energy flow through communities is a primary goal of ecology. Furthermore, predator–prey interactions can influence both species abundance and community composition. The ant subfamily Ponerinae includes many predatory species that range from generalist insectivores to highly specialised hunters that target a single prey type. Given their high diversity and ubiquity in tropical ecosystems, measuring intra- and interspecific variation in their trophic ecology is essential for understanding the role of ants as predators of insect communities. 2. The stable isotopic composition of nitrogen of 22 species from the ant subfamily Ponerinae was measured, relative to plants and other predatory and herbivorous insects at two Atlantic Forest sites in Argentina. The study tested the general assumption that ponerine ants are all predatory, and examined intra- and interspecific variation in trophic ecology relative to habitat, body size and cytochrome c oxidase subunit 1 sequences (DNA barcoding). 3. Stable isotope analysis revealed that most ponerines occupy high trophic levels (primary and secondary predators), but some species overlapped with known insect herbivores. Species residing at low trophic levels were primarily arboreal and may rely heavily on nectar or other plant-based resources in their diet. In addition, larger species tend to occupy lower trophic positions than smaller species. 4. Although some of the species were divided into two or more genetic clusters by DNA barcoding analysis, these clusters did not correspond to intraspecific variation in trophic position; therefore, colony dietary flexibility most probably explains species that inhabit more than one trophic level.  相似文献   

14.
The cabbage bugs Eurydema rugosa Motschulsky and Eurydema dominulus (Scopoli) (Heteroptera: Pentatomidae: Strachiini) possess a number of crypts in a posterior region of the midgut, which are filled with bacterial symbiont cells. Here we characterized the gut symbionts of Eurydema stinkbugs using molecular phylogenetic and histological techniques. Specific gammaproteobacteria were consistently identified from the posterior midgut of E. rugosa representing nine populations and E. dominulus representing six populations, respectively. The bacterial 16S rRNA gene sequences were identical within the species but slightly different (98.2% sequence identity) between the species. Molecular phylogenetic analysis revealed that the Eurydema symbionts formed a well-defined monophyletic group in the Gammaproteobacteria. The symbionts were phylogenetically distinct from the gut symbionts of the stinkbug families Acanthosomatidae, Plataspidae, Parastrachiidae, Scutelleridae, and other pentatomid species, suggesting multiple evolutionary origins of the gut symbiotic bacteria among diverse stinkbugs. In situ hybridization confirmed that the symbiont is located in the cavity of the midgut crypts. Aposymbiotic insects of E. rugosa, which were produced by egg surface sterilization, were viable but suffered retarded growth, reduced body weight, and abnormal body color, suggesting the biological importance of the symbiont for the host.  相似文献   

15.
Partner fidelity through vertical symbiont transmission is thought to be the primary mechanism stabilizing cooperation in the mutualism between fungus‐farming (attine) ants and their cultivated fungal symbionts. An alternate or additional mechanism could be adaptive partner or symbiont choice mediating horizontal cultivar transmission or de novo domestication of free‐living fungi. Using microsatellite genotyping for the attine ant Mycocepurus smithii and ITS rDNA sequencing for fungal cultivars, we provide the first detailed population genetic analysis of local ant–fungus associations to test for the relative importance of vertical vs. horizontal transmission in a single attine species. M. smithii is the only known asexual attine ant, and it is furthermore exceptional because it cultivates a far greater cultivar diversity than any other attine ant. Cultivar switching could permit the ants to re‐acquire cultivars after garden loss, to purge inferior cultivars that are locally mal‐adapted or that accumulated deleterious mutations under long‐term asexuality. Compared to other attine ants, symbiont choice and local adaptation of ant–fungus combinations may play a more important role than partner‐fidelity feedback in the co‐evolutionary process of M. smithii and its fungal symbionts.  相似文献   

16.
长期以来,白蚁对木质纤维素的降解能力令人惊叹,毫无疑问,其在全球碳循环中扮演着一个十分重要的角色。这一强大功能的实现极大地依赖于一种特别的肠道"消化液(digestome)",它的构成不仅包括了来自白蚁自身产生的木质纤维素降解酶系统,还来源于独特与多样的肠道共生微生物的贡献(包括了古细菌、细菌、酵母以及其他真核生物),它们的协同作用能有效地将木质纤维素生物质高效转化为乙酸、甲烷、二氧化碳、氢气等物质。然而,到目前为止,我们对这类昆虫的独特肠道生物转化系统的认识还很不深入,特别是针对肠道内的那些各类共生微生物菌群的功能、白蚁与共生微生物间的相互关系、以及潜在的科学与应用价值还无法给予明确的科学解释,更不用说针对其肠道中的共生酵母菌群,一类通常被忽略的独特微生物。近20多年来,越来越多的研究证据表明,白蚁肠道共生酵母在与寄主的关系中表现了不可或缺的重要性与独特功能,已被证明广泛分布于不同白蚁及许多其他昆虫的肠道中。随着近20年来越来越多昆虫肠道共生微生物酵母群被发现和鉴定,他们潜在的功能以及与寄主的共生机制被逐步解析,这些研究结果进一步揭示了"隐身"的昆虫肠道酵母类微生物菌群与寄主的营养、关键生物质转化过程中的重要酶系统、转化过程中的关键中间产物的转化与利用、抵御外源性的重要病原物,甚至对白蚁种群繁衍的远缘交配等方面均可能发挥了重要和不可缺少的作用。本文将试图归纳相关研究的最新进展,系统总结与解析白蚁肠道来源共生酵母的重要科学价值及其在不同领域的潜在应用前景。  相似文献   

17.
Abstract 1. We examined the relative effects of the invasive Argentine ant, Linepithema humile, and a common native ant, Prenolepis imparis, on the community of herbivorous insects occurring on willow trees, Salix lasiolepis in Northern California, U.S.A. 2. Using paired control and treatment branches from which we excluded ants and other non‐volant predators, we found that effects of Argentine ants on the herbivore community were generally similar to those of P. imparis. Argentine ants and P. imparis suppressed the damage by skeletonising insects by 50%, but had little effect on most other external‐feeding or internal‐feeding guilds. 3. The abundance of aphids was 100% greater in the presence of Argentine ants, but there was no effect on aphid numbers in the presence of P. imparis. Late season aphid numbers were substantially higher in the presence of Argentine ants, but not P. imparis. 4. The effects of Argentine ants on skeletonising insects and aphids combined with the overwhelming abundance of Argentine ant workers, suggests that they may have substantial, but often overlooked, effects on the herbivore communities on other plant species in or near riparian habitats in which they invade.  相似文献   

18.
Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.  相似文献   

19.
Symbiotic microbiomes play important roles in hosts’ adaptation and evolution. Here, the gut bacterial communities in Cephalcia chuxiongica, a key pest of pines in China, were studied for the first time by using 16S rRNA amplicon sequencing. The composition of gut bacterial communities differed in different C. chuxiongica geographic populations but interestingly, the phylogeny and diversity of gut microbiota correlated with host geographic/genetic distance, that is the microbiota was more similar as the geographic/genetic distance decreased, and vice versa. The various microbes performed similar functions and showed functional complementation, in which most of identified KEGG pathways were shared by different populations with metabolism being the most dominant functional pathway and the function of major microbes associated with host dietary specialization (pine needles), such as cellulose degradation. In addition, some microbes also associated with host biological characteristics, such as Wolbachia with parthenogenesis and Serratia with the long-term larval diapause in C. chuxiongica. Therefore, the synergy of environmental and host factors shapes the structure of gut microbiota and gut microbiota play essential roles in host physiology and adaptation, suggesting some kind of symbiosis and coevolution. These results demonstrate the important contribution of gut microbiota and provide a sound foundation for developing control strategies for this pest.  相似文献   

20.
Embryos of oviparous organisms must cope with harsh environments and are especially susceptible to disease, considering that many immune mechanisms do not develop until later in life. Parents may transmit symbiotic microflora to eggs, which can contribute to embryo immune defense. Despite the importance of symbiotic microbes for immune function and survival of adult amphibians, vertical transfer of symbionts in amphibians has received less attention than in other taxa. Here, we test the role of male‐only parental care in establishing and maintaining the diversity of egg‐bacterial assemblages in a Neotropical glassfrog (Centrolenidae). Previous research suggests that father Hyalinobatrachium colymbiphyllum may transfer bacterial symbionts to their eggs. We combined a male‐removal experiment in situ with 16S rRNA gene amplicon sequencing to determine whether egg attendance by father H. colymbiphyllum influences the bacterial community and survival of eggs. We found that eggs harbor a diverse and stable bacterial assemblage. Despite different host environments, we found that adult skin and eggs supported very similar bacterial assemblages—even after removing fathers. While we found overlap in the bacteria present on eggs and their fathers, our experiment reveals that extended male care does not contribute to the maintenance of egg‐bacterial communities, so there may be other potential routes of transfer. This study contributes to our understanding of the diversity and maintenance of egg microbiomes, and motivates further research on how initial bacteria are acquired and the ontogenetic development of host–symbiont communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号