首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In classical evolutionary theory, genetic variation provides the source of heritable phenotypic variation on which natural selection acts. Against this classical view, several theories have emphasized that developmental variability and learning enhance nonheritable phenotypic variation, which in turn can accelerate evolutionary response. In this paper, I show how developmental variability alters evolutionary dynamics by smoothing the landscape that relates genotype to fitness. In a fitness landscape with multiple peaks and valleys, developmental variability can smooth the landscape to provide a directly increasing path of fitness to the highest peak. Developmental variability also allows initial survival of a genotype in response to novel or extreme environmental challenge, providing an opportunity for subsequent adaptation. This initial survival advantage arises from the way in which developmental variability smooths and broadens the fitness landscape. Ultimately, the synergism between developmental processes and genetic variation sets evolutionary rate.  相似文献   

2.
Several tumour types are sensitive to deactivation of just one or very few genes that are constantly active in the cancer cells, a phenomenon that is termed ‘oncogene addiction’. Drugs that target the products of those oncogenes can yield a temporary relief, and even complete remission. Unfortunately, many patients receiving oncogene-targeted therapies relapse on treatment. This often happens due to somatic mutations in the oncogene (‘resistance mutations’). ‘Compound mutations’, which in the context of cancer drug resistance are defined as two or more mutations of the drug target in the same clone may lead to enhanced resistance against the most selective inhibitors. Here, it is shown that the vast majority of the resistance mutations occurring in cancer patients treated with tyrosin kinase inhibitors aimed at three different proteins follow an evolutionary pathway. Using bioinformatic analysis tools, it is found that the drug-resistance mutations in the tyrosine kinase domains of Abl1, ALK and exons 20 and 21 of EGFR favour transformations to residues that can be identified in similar positions in evolutionary related proteins. The results demonstrate that evolutionary pressure shapes the mutational landscape in the case of drug-resistance somatic mutations. The constraints on the mutational landscape suggest that it may be possible to counter single drug-resistance point mutations. The observation of relatively many resistance mutations in Abl1, but not in the other genes, is explained by the fact that mutations in Abl1 tend to be biochemically conservative, whereas mutations in EGFR and ALK tend to be radical. Analysis of Abl1 compound mutations suggests that such mutations are more prevalent than hitherto reported and may be more difficult to counter. This supports the notion that such mutations may provide an escape route for targeted cancer drug resistance.  相似文献   

3.
4.
Breast cancer is one of the most common cancers and affects nearly 1 in 7 women. We have demonstrated that targeting the CaM-K, Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be a novel approach to treat drug resistant breast cancer and eliminate cancer stem cells. Common chemotherapeutic drugs, such as doxorubicin, induce the CaM-K pathway which in turn, leads to activation of anti-apoptotic pathways such as Raf/MEK/ERK and PI3K/Akt. Some drug resistant breast cancers exhibited increased expression of CaM-KIV. CaM-K inhibitors synergized with doxorubicin to induce the death of all drug resistant breast cancers examined. Since CaM-Ks are known to result in activation of the Raf/MEK/ERK and PI3K/Akt pathways, we investigated the roles that these pathways exert in breast cancer drug resistance. CaM-K inhibitors suppressed ERK activation in response to doxorubicin in both drug sensitive and resistant cells. CaM-K inhibitors also suppressed ERK activation in response to FBS in the drug resistant cells suggesting dependence on the CaM-K pathway for proliferation. Both the Raf/MEK/ERK and PI3K/Akt pathways are involved in breast cancer drug resistance as they were detected at elevated, activated levels in the drug resistant cells and introduction of constitutively activated forms of Raf-1 and Akt-1 resulted in drug resistance. Drug resistant CICs were often hypersensitive to MEK and mTOR inhibitors, implicating important roles of these pathways in drug resistance. In summary, targeting these pathways may enhance therapy of drug resistant breast cancer and eliminate CICs.Breast cancer therapy is often limited by the occurrence of drug resistance which may be due to the re-emergence of CICs. The studies outlined in this proposal may identify a potentially novel role for CaM-Ks in drug resistance and metastasis and may lead to improved approaches to treat breast tumors by eliminating CICs. Our proposed studies are highly innovative as we will determine the involvement of the CaM-K pathway in breast cancer drug resistance, metastasis and CIC formation. Similar approaches have not been previously performed. Our studies may result in the discovery of novel methods to treat breast cancer by targeting the CaM-K pathway in combination with currently used and approved chemotherapeutic regimens to eliminate CICs which may be responsible for both drug resistance and metastasis.  相似文献   

5.
Hepatocellular carcinoma (HCC) is a highly lethal malignancy characterized by poor prognosis and a low 5-year survival rate. Drug treatment is proving to be effective in anti-HCC. However, only a small number of HCC patients exhibit sensitive responses, and drug resistance occurs frequently in advanced patients. Autophagy, an evolutionary process responsible for the degradation of cellular substances, is closely associated with the acquisition and maintenance of drug resistance for HCC. This review focuses on autophagic proteins and explores the intricate relationship between autophagy and cancer stem cells, tumor-derived exosomes, and noncoding RNA. Clinical trials involved in autophagy inhibition combined with anticancer drugs are also concerned.Subject terms: Cancer metabolism, Cancer therapeutic resistance  相似文献   

6.
The goal of cancer chemotherapy is to induce homogeneous cell death within the population of targeted cancer cells. However, no two cells are exactly alike at the molecular level, and sensitivity to drug-induced cell death, therefore, varies within a population. Genetic alterations can contribute to this variability and lead to selection for drug resistant clones. However, there is a growing appreciation for the role of non-genetic variation in producing drug-tolerant cellular states that exhibit reduced sensitivity to cell death for extended periods of time, from hours to weeks. These cellular states may result from individual variation in epigenetics, gene expression, metabolism, and other processes that impact drug mechanism of action or the execution of cell death. Such population-level non-genetic heterogeneity may contribute to treatment failure and provide a cellular “substrate” for the emergence of genetic alterations that confer frank drug resistance.  相似文献   

7.
Demographic theory and data have emphasized that nonheritable variation in individual frailty enables selection within cohorts, affecting the dynamics of a population while being invisible to its evolution. Here, we include the component of individual variation in longevity or viability which is nonheritable in simple bacterial growth models and explore its ecological and evolutionary impacts. First, we find that this variation produces consistent trends in longevity differences between bacterial genotypes when measured across stress gradients. Given that direct measurements of longevity are inevitably biased due to the presence of this variation and ongoing selection, we propose the use of the trend itself for obtaining more exact inferences of genotypic fitness. Second, we show how species or strain coexistence can be enabled by nonheritable variation in longevity or viability. These general conclusions are likely to extend beyond bacterial systems.  相似文献   

8.
Quantitative genetic diversity is a fundamental component of the interaction between natural populations and their environment. In breeding programmes, quantitative genetic studies on tropical trees have so far focused on fast-growing, light-demanding species, but no information exists on shade-tolerant, slow-growing species. For this study, 27 3-year-old open-pollinated families of the Neotropical shade-tolerant rainforest tree Sextonia rubra were measured in semicontrolled conditions for 20 morphological, growth, and photosynthesis traits; the effect of genetic relatedness, habitat of provenance, and mother tree status on seedling traits was analysed. Nine traits displayed significant genetic effects, while mother tree status and habitat effects were not significant (P > 0.05) for an y trait. Estimated heritability varied between 0.14 and 0.28, with growth-related traits having the highest values. Additive genetic variation correlated positively with nonheritable variation, suggesting that ecological–evolutionary factors increasing or decreasing additive genetic variance may also affect nonheritable variation in the same direction. Our results suggest that quantitative genetic variability should be taken into account in ecological studies on, and in the management of, natural tropical rainforests; further research is needed to investigate genetic × environment interactions, in particular from the point of view of the genetic response of shade-tolerant plant species to variations in light availability.  相似文献   

9.
Chemotherapy is an important therapeutic approach for cancer treatment. However, drug resistance is an obstacle that often impairs the successful use of chemotherapies. Therefore, overcoming drug resistance would lead to better therapeutic outcomes for cancer patients. Recently, studies by our own and other groups have demonstrated that there is an intimate correlation between the loss of the F-box and WD repeat domain-containing 7 (FBW7) tumor suppressor and the incurring drug resistance. While loss of FBW7 sensitizes cancer cells to certain drugs, FBW7-/- cells are more resistant to other types of chemotherapies. FBW7 exerts its tumor suppressor function by promoting the degradation of various oncoproteins that regulate many cellular processes, including cell cycle progression, cellular metabolism, differentiation, and apoptosis. Since loss of the FBW7 tumor suppressor is linked to drug resistance, FBW7 may represent a novel therapeutic target to increase drug sensitivity of cancer cells to conventional chemotherapeutics. This paper thus focuses on the new functional aspects of FBW7 in drug resistance.  相似文献   

10.
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.  相似文献   

11.

Background  

Mixture models of mutagenetic trees are evolutionary models that capture several pathways of ordered accumulation of genetic events observed in different subsets of patients. They were used to model HIV progression by accumulation of resistance mutations in the viral genome under drug pressure and cancer progression by accumulation of chromosomal aberrations in tumor cells. From the mixture models a genetic progression score (GPS) can be derived that estimates the genetic status of single patients according to the corresponding progression along the tree models. GPS values were shown to have predictive power for estimating drug resistance in HIV or the survival time in cancer. Still, the reliability of the exact values of such complex markers derived from graphical models can be questioned.  相似文献   

12.
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip−1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip−1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.  相似文献   

13.
Ovarian cancer is the deadliest of gynecologic cancers, largely due to the development of drug resistance in chemotherapy. Prostasin may have an essential role in the oncogenesis. In this study, we show that prostasin is decreased in an ovarian cancer drug-resistant cell line and in ovarian cancer patients with high levels of excision repair cross-complementing 1, a marker for chemoresistance. Our cell cultural model investigation demonstrates prostasin has important roles in the development of drug resistance and cancer cell survival. Forced overexpression of prostasin in ovarian cancer cells greatly induces cell death (resulting in 99% cell death in a drug-resistant cell line and 100% cell death in other tested cell lines). In addition, the surviving cells grow at a much lower rate compared with non-overexpressed cells. In vivo studies indicate that forced overexpression of prostasin in drug-resistant cells greatly inhibits the growth of tumors and may partially reverse drug resistance. Our investigation of the molecular mechanisms suggests that prostasin may repress cancer cells and/or contribute to chemoresistance by modulating the CASP/P21-activated protein kinase (PAK2)-p34 pathway, and thereafter PAK2-p34/JNK/c-jun and PAK2-p34/mlck/actin signaling pathways. Thus, we introduce prostain as a potential target for treating/repressing some ovarian tumors and have begun to identify their relevant molecular targets in specific signaling pathways.  相似文献   

14.
The replication licensing factors strictly regulate the DNA replication origin licensing process to guarantee the stability of the genome. Numerous experimental studies have recently demonstrated that the replication licensing factors as oncogenes are essential for the occurrence and development of cancers. Drug resistance, being one of the main characteristics of cancer stem cells, can cause a high recurrence rate and a low survival rate in patients with different cancers. However, the function of the replication licensing factors in cancer stemness remains unclear. The following article highlights the most recent research on DNA replication origin licensing factors in cancer and their function in anti-cancer drug resistance. Moreover, this article proposes a new perspective that replication licensing factors as chemotherapy shield affect anti-cancer drug resistance by promoting the stemness of cancer cells.  相似文献   

15.
Acquired resistance is one of the major barriers to successful cancer therapy. The development of resistance is commonly attributed to genetic heterogeneity. However, heterogeneity of drug penetration of the tumor microenvironment both on the microscopic level within solid tumors as well as on the macroscopic level across metastases may also contribute to acquired drug resistance. Here we use mathematical models to investigate the effect of drug heterogeneity on the probability of escape from treatment and the time to resistance. Specifically we address scenarios with sufficiently potent therapies that suppress growth of all preexisting genetic variants in the compartment with the highest possible drug concentration. To study the joint effect of drug heterogeneity, growth rate, and evolution of resistance, we analyze a multi-type stochastic branching process describing growth of cancer cells in multiple compartments with different drug concentrations and limited migration between compartments. We show that resistance is likely to arise first in the sanctuary compartment with poor drug penetrations and from there populate non-sanctuary compartments with high drug concentrations. Moreover, we show that only below a threshold rate of cell migration does spatial heterogeneity accelerate resistance evolution, otherwise deterring drug resistance with excessively high migration rates. Our results provide new insights into understanding why cancers tend to quickly become resistant, and that cell migration and the presence of sanctuary sites with little drug exposure are essential to this end.  相似文献   

16.
化疗药物耐药逐渐成为肿瘤治疗的主要障碍。肿瘤耐药的发生机制主要包括药物的外排增加、DNA修复增强、凋亡受抑、上皮 间质转化以及肿瘤干细胞的存在。因此,迫切需要寻找新的生物标志物,通过逆转肿瘤的耐药性,从而增加化疗药物的疗效,以提高患者的总体生存率。钠氢交换蛋白 (sodium hydrogen exchanger 1, NHE1) 在调控肿瘤细胞的增殖、凋亡和耐药中发挥重要作用,被认为是肿瘤治疗中调控耐药性的潜在靶标。本文简要介绍钠氢交换蛋白的结构和主要功能,重点阐述钠氢交换蛋白对肿瘤耐药的影响和调控机制,以及在肿瘤的发展、转移中的作用的研究进展。  相似文献   

17.
We examined transforming growth factor (TGF) alpha, epidermal growth factor (EGF) and EGF receptor (EGFR) expression and signaling in three drug resistant MCF-7 human breast cancer sublines and asked whether these pathways contribute to the drug resistance phenotype. In the resistant sublines, upregulation of both TGFalpha and EGFR mRNA was observed. In an apparent contrast with upregulated growth factor and receptor gene expression, the drug resistant sublines displayed a reduced growth rate. Defects in the EGFR signaling pathway cascade were found in all examined drug resistant sublines, including altered EGF-induced Shc, Raf-1, or mitogen-activated protein kinase phosphorylation. Induction of c-fos mRNA expression by EGF was impaired in the sublines compared to parental MCF-7 cells. In contrast, the induction of the stress-activated protein kinase activity was similar in both parental and drug resistant cells. Evaluating the link between the reduced growth rate and drug resistance, serum starvation experiments were performed. These studies demonstrated that a reduced proliferative activity resulted in a marked reduction in sensitivity to cytotoxic agents in the parental MCF-7 cells. We propose that the altered EGFR levels frequently observed in drug resistant breast cancer cells are associated with perturbations in the signaling pathway that mediate a reduced proliferative rate and thereby contribute to drug resistance.  相似文献   

18.
目的:建立人胃癌SGC7901表柔比星耐药细胞系,探讨其对表柔比星的耐药机制。方法:采用逐步增加表柔比星浓度,间歇作用体外诱导法,建立人胃癌SGC7901表柔比星耐药细胞亚系SGC7901/EPI。用MTT法测定药物敏感性;流式细胞仪检测其药物排除能力和凋亡抵抗能力等生物学指标的改变,western blot检测相关蛋白的表达。结果:经过12个月建成人胃癌SGC7901表柔比星耐药细胞系SGC7901/EPI,其对表柔比星明显耐药,且对其他多种抗癌药具有不同程度的交叉耐药性,阿霉素蓄积潴留实验显示SGC7901/EPI的阿霉素含量明显低于亲本细胞,Western blot显示MRP1的表达上调;SGC7901/EPI凋亡抵抗能力明显上升,Bcl-2表达比亲本细胞增高,而Bax的表达下调。结论:SGC7901/EPI细胞具有多药耐药表型,其可能通过MRP1的上调增加药物排出和上调Bcl-2/Bax的比值促进凋亡抵抗等机制产生耐药。该胃癌多药耐药细胞亚系为进一步研究胃癌耐药机制及逆转方法奠定基础。  相似文献   

19.
These days, cancer can still not be effectively cured because cancer cells readily develop resistance to anticancer drugs. Therefore, an effective combination of drugs with different mechanisms to prevent drug resistance has become a very important issue. Furthermore, the BH3‐only protein BNIP3 is involved in both apoptotic and autophagic cell death. In this study, lung cancer cells were treated with a chemotherapy drug alone or in combination to identify the role of BNIP3 and autophagy in combination chemotherapy for treating cancer. Our data revealed that various combinational treatments of two drugs could increase cancer cell death and cisplatin in combination with rapamycin or LBH589, which triggered the cell cycle arrest at the S phase. Cells with autophagosome and pEGFP‐LC3 puncta increased when treated with drugs. To confirm the role of autophagy, cancer cells were pre‐treated with the autophagy inhibitor 3‐methyladenine (3‐MA). 3‐MA sensitized cancer cells to chemotherapy drug treatments. These results suggest that autophagy may be responsible for cell survival in combination chemotherapy for lung cancer. Moreover, BNIP3 was induced and localized in mitochondria when cells were treated with drugs. The transfection of a dominant negative transmembrane deletion construct of BNIP3 (BNIP3ΔTM) and treatment of a reactive oxygen species (ROS) inhibitor suppressed chemo drug‐induced cell death. These results indicate that BNIP3 and ROS may be involved in combination chemo drug‐induced cell death. However, chemo drug‐induced autophagy may protect cancer cells from drug cytotoxicity. As a result, inhibiting autophagy may improve the effects of combination chemotherapy when treating lung cancer.  相似文献   

20.
Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. Tipping the balance between cell death and proliferation in favor of cell survival may result in tumor formation. Moreover, current cancer therapies, e.g. chemotherapy, gamma-irradiation, immunotherapy or suicide gene therapy, primarily exert their antitumor effect by triggering an evolutionary conserved apoptosis program in cancer cells. For example, death receptor signaling has been implied to contribute to the efficacy of cancer therapy. Thus, failure to undergo apoptosis in response to anticancer therapy because of defects in death receptor pathways may result in resistance. Further insights into the mechanisms regulating apoptosis in response to anticancer therapy and how cancer cells evade cell death may provide novel opportunities for targeted therapeutics. Thus, agents designed to selectively activate death receptor pathways may enhance the efficacy of conventional therapies and may even overcome some forms of cancer resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号