首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eleven 4-substituted derivatives of 6-nitroquipazine were synthesized and evaluated for their abilities to displace [3H]citalopram binding to the rat cortical synaptic membranes. Among them, 4-chloro-6-nitroquipazine was shown to possess the highest binding affinity (K(i=)0.03 nM) which was approximately 6 times higher than that of 6-nitroquipazine (K(i)=0.17 nM) itself. In this paper, we describe the syntheses of 4-substituted 6-nitroquipazine derivatives, the results of corresponding biological evaluation and the SAR study.  相似文献   

2.
A 5,7-dichloro-3-phenyl-3-methyl-quinoline-2,4-dione (11a) has been identified in a random screen as a lead for 5-HT(6) antagonist. During the lead optimization process, several analogs were synthesized and their biological activities were investigated. Within this series, several compounds display high binding affinity and selectivity for the 5-HT(6) receptor. In particular, 3-(4-hydroxyphenyl)-3-methyl-quinoline-2,4-dione (12f) exhibits high affinity (K(i)=12.3 nM) for 5-HT(6) receptor with good selectivity over other serotonin and dopamine (D(1)-D(4)) receptor subtypes. In a functional adenylyl cyclase stimulation assay, this compound exhibited considerable antagonistic activity (IC(50)=0.61 microM).  相似文献   

3.
1-Benzenesulfonyl-5-methoxy-N,N-dimethyltryptamine (3; K(i)=2.3 nM) is a 5-HT(6) receptor antagonist; removal of the 5-methoxy group (i.e., 6; K(i)=4.1 nM) has little impact on receptor affinity. In the present study, it is shown that the aminomethyl portion of 6 can be shortened to gramine analogue 10a (K(i)=3.1 nM); a related skatole derivative 11b (K(i)=12 nM) also binds with high affinity indicating that the aminoethyl portion of the tryptamines is not required for binding. Compounds 10a and 11b represent members of novel classes of 5-HT(6) antagonists.  相似文献   

4.
In an effort to produce new pharmacological probes with mixed sigma/5-HT(1A) affinity, we have synthesized a series of 12 original 6-piperidino- or piperazino-alkyl-2(3H)-benzothiazolones and their receptor binding profile (sigma, 5-HT(1A), 5-HT(2A), 5-HT(3), D(2), H(1), and M(1)) was determined. The best mixed sigma/5-HT(1A) affinity profile was found within the piperidine series with 4-benzyl substitution associated to linker methylene chain n=2 (K(i) 5 and 4nM, respectively). Moreover, a highly selective sigma2 ligand was obtained with a 3,4-dichlorobenzyl substitution associated to n=4 (K(i) 2nM, selectivity ratio sigma1/sigma2=70).  相似文献   

5.
To determine if the indolic nitrogen atom is required for the binding of N(1)-benzyltryptamines at h5-HT(6) serotonin receptors, several isotryptamines and indene analogs were examined. The affinity of 3-benzyl-N(1)-(N,N-dimethylaminoethyl)indole (5, K(i)=32nM) and 1-benzyl-3-(N,N-dimethylaminoethyl)indene (11, K(i)=3nM) indicates that the indolic nitrogen atom is not essential for binding.  相似文献   

6.
A series of 6-ester- (3 and 4) and 6-ether- (7 and 8) substituted androst-4-ene-3,17-diones (androstenediones) and their 1,4-diene analogs (5 and 6, and 9 and 10) as well as C6-substituted 4,6-diene and 1,4,6-triene steroids 11 and 12 were synthesized as aromatase inhibitors to gain insight into the structure-activity relationship between various substituents and inhibitory activity. All of the inhibitors synthesized blocked aromatase in a competitive manner. The inhibitory activities of all of the steroids, except for the 6beta-benzoates 4g and 6h and the 6beta-acetate 6a, were fairly effective to very powerful (K(i): 7.0-320 nM). The 6alpha-n-hexanoyloxy- and 6alpha-benzyloxyandrostenediones (3e and 7e) were the most potent inhibitors (K(i): 7.0 nM each). In the series of 4-ene and 1,4-diene steroids, the 6alpha-substituted steroids had higher affinity for the enzyme than the corresponding 6beta-isomers. In the 1,4-diene steroid series, 6beta-substituted steroids 6a, e, g, and 10a, b, e caused a time-dependent inactivation of aromatase, whereas their 6alpha-isomers 5 and 9 essentially did not. The ether-substituted 1,4,6-trienes 12 inactivated the enzyme in a time-dependent manner; in contrast, their 4,6-diene analogs 11 did not. The substrate androstenedione blocked the inactivation, but no significant effect of L-cysteine was observed. Based on molecular modeling with the PM3 method, along with the present inhibition and inactivation results, it is thought that both the steric effects of the 6-substituents as well as the electronic effects of the C-6 oxygen functions play a critical role in the binding of inhibitors to the active site of aromatase.  相似文献   

7.
A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.089nM at the μ receptor and 0.073nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists.  相似文献   

8.
Nucleoside transporter inhibitors have potential therapeutic applications as anticancer, antiviral, cardioprotective, and neuroprotective agents. We have synthesized and flow cytometrically evaluated the binding affinity of a series of novel halogenated nitrobenzylthioinosine analogs at the human es nucleoside transporter. Structure-activity relationships indicate the importance of hydrophobicity and electron withdrawing capacity of substituents at the para-position of the 6-position benzyl substituent. All of the compounds showed high binding affinity as shown by their ability to displace the fluorescent es transporter ligand, SAENTA-X8-fluorescein. Compound 16 (6-S-(para-iodobenzyl)-6-thioinosine) was the most tightly bound within the series with a K(i) of 3.88 nM (NBMPR exhibited a K(i) of 0.70 nM). This compound has higher affinity than the widely used nonnucleoside, nucleoside transport inhibitor, dipyridamole (K(i) = 8.79 nM), and may serve as a new lead compound.  相似文献   

9.
Racemic exo-epiboxidine 3, endo-epiboxidine 6, and the two unsaturated epiboxidine-related derivatives 7 and 8 were efficiently prepared taking advantage of a palladium-catalyzed Stille coupling as the key step in the reaction sequence. The target compounds were assayed for their binding affinity at neuronal alpha4beta2 and alpha7 nicotinic acetylcholine receptors. Epiboxidine 3 behaved as a high affinity alpha4beta2 ligand (K(i)=0.4 nM) and, interestingly, evidenced a relevant affinity also for the alpha7 subtype (K(i)=6 nM). Derivative 7, the closest analogue of 3 in this group, bound with lower affinity at both receptor subtypes (K(i)=50 nM for alpha4beta2 and K(i)=1.6 microM for alpha7) evidenced a gain in the alpha4beta2 versus alpha7 selectivity when compared with the model compound.  相似文献   

10.
A series of 2-(N-acyl) and 2-(N-acyl)-N(6)-alkyladenosine analogues have been synthesized from the intermediate 2-amino-6-chloroadenosine derivatives (2b and 7) and evaluated for their affinity at the human A(1), A(2A), and A(3) receptors. We found that 2-(N-acyl) derivatives of adenosine showed relatively low affinity at A(2A) and A(3) receptors, while the N(6)-cyclopentyl substituent in 4h and 4i induced high potency [A(1) (K(i))=20.7 and 31.8 nM respectively] at the A(1) receptor and resulted therefore in increased selectivity for this subtype. The general synthetic methods and their binding studies are presented herein.  相似文献   

11.
A series of methyllycaconitine (1a, MLA) analogs was synthesized where the (S)-2-methylsuccinimidobenzoyl group in MLA was replaced with a (R)-2-methyl, 2,2-dimethyl-, 2,3-dimethyl, 2-phenyl-, and 2-cyclohexylsuccinimidobenzoyl (1b-f) group. The analogs 1b-f were evaluated for their inhibition of [(125)I]iodo-MLA binding at rat brain alpha7 nicotinic acetylcholine receptors (nAChR). In order to determine selectivity, MLA and the analogs 1b-f were evaluated for inhibition of binding to rat brain alpha,beta nAChR using [(3)H]epibatidine. At the alpha7 nAChR, MLA showed a K(i) value of 0.87 nM, analogs 1b-e possessed K(i) values of 1.67-2.16 nM, and 1f showed a K(i) value of 26.8 nM. Surprisingly, the analog 1e containing the large phenyl substituent (K(i)=1.67 nM) possessed the highest affinity. None of the compounds possessed appreciable affinity for alpha,beta nAChRs. MLA antagonized nicotine-induced seizures with an AD(50)=2 mg/kg. None of the MLA analogs were as potent as MLA in this assay. MLA and all of the MLA analogs, with the exception of 1b, antagonized nicotine's antinociceptive effects in the tail-flick assay. Compound 1c (K(i)=1.78 nM at alpha7 nAChR) with an AD(50) value of 1.8 mg/kg was 6.7 times more potent than MLA (AD(50)=12 mg/kg) in antagonizing nicotine's antinociceptive effects but was 5-fold less potent than MLA in blocking nicotine-induced seizures. Since MLA has been reported to show neuroprotection against beta-amyloid(1-42), these new analogs which have high alpha7 nAChR affinity and good selectivity relative to alpha,beta nAChRs will be useful biological tools for studying the effects of alpha7 nAChR antagonist and neuroprotection.  相似文献   

12.
A series of benzo[b]thiophene-derived NPY-1 receptor antagonists is described. Systematic modification of the C-2 substituent afforded a 1000-fold range in Y1 receptor affinity. Appropriate substitution at the ortho and para positions of the C-2 phenyl ether produced a synergistic effect on Y1 binding affinity, which led to the discovery of the most active ligands, 12t (K(i) = 15 nM), 12u (K(i) = 11 nM), and 12v (K(i) = 13 nM).  相似文献   

13.
On the basis of potent and selective A(3) adenosine receptor (AR) antagonist, 2-chloro-N(6)-(3-iodobenzyl)-4'-thioadenosine-5'-N,N-dimethyluronamide, structure-activity relationships were studied for a series of 5'-N,N-dialkyluronamide derivatives, synthesized from D-gulonic gamma-lactone. From this study, it was revealed that removal of the hydrogen bond-donating ability of the 5'-uronamide was essential for the pure A(3)AR antagonism. 5'-N,N-Dimethyluronamide derivatives exhibited higher binding affinity than larger 5'-N,N-dialkyl or 5'-N,N-cycloalkylamide derivatives, indicating that steric factors are crucial in binding to the human A(3)AR. A N(6)-(3-bromobenzyl) derivative 6c (K(i)=9.32 nM) exhibited the highest binding affinity at the human A(3)AR with very low binding affinities to other AR subtypes.  相似文献   

14.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

15.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

16.
A series of nonsteroidal glucocorticoid receptor (GR) ligands based on a 6-indole-1,2,3,4-tetrahydroquinoline scaffold are reported. Structure-activity relationship (SAR) of the pendent indole group identified compound 20 exhibiting good GR binding affinity (K(i)=1.5nM) and 100- to 1000-fold selectivity over MR, PR, and AR while showing activity in an E-selectin repression assay.  相似文献   

17.
Glucokinase is inhibited in the liver by a regulatory protein (GKRP) whose effects are increased by Fru-6-P and suppressed by Fru-1-P. To identify the binding site of these phosphate esters, we took advantage of the homology of GKRP to the isomerase domain of GlmS (glucosamine-6-phosphate synthase) and created 12 different mutants of rat GKRP. Mutations of three residues predicted to bind to Fru-6-P resulted in proteins that were approximately 5-fold (S110A) and 50-fold (S179A and K514A) less potent as inhibitors of glucokinase and had an at least 100-fold reduced affinity for the effectors. Mutation of another residue of the putative binding site (T109A) resulted in a 10-fold decrease in the inhibitory power and an inversion of the effect of sorbitol-6-P, a Fru-6-P analog. The replacement of Gly(107), a residue close to the binding site, by cysteine (as in GlmS and Xenopus GKRP) resulted in a protein that had 20 times more affinity for Fru-6-P and 30 times less affinity for Fru-1-P. These results are consistent with GKRP having one single binding site for phosphate esters. They also show that a missense mutation of GKRP can lead to a gain of function.  相似文献   

18.
19.
The physiological functions of hyaluronan (HA) in the extracellular matrix of vertebrate tissues involve a range of specific protein interactions. In this study, the interaction of HA with the Link module from TSG-6 (Link_TSG6) and G1 domain of aggrecan (G1), were investigated by a biophysical analysis of translational diffusion in dilute solution using confocal fluorescence recovery after photobleaching (confocal FRAP). Both Link_TSG6 and G1 were shown to bind to polymeric HA and these interactions could be competed with HA(8) and HA(10) oligosaccharides, respectively. Equilibrium experiments showed that the binding affinity of Link_TSG6 to HA was maximal at pH 6.0, and reduced dramatically above and below this pH. In contrast, G1 had maximum binding at pH 7.0-8.0 and moderate to strong binding affinity over a much broader pH range (5.5-8.0). The K(D) determined for Link_TSG6 binding to HA showed a 100-fold increase in binding affinity between pH 7.4 and 6.0, whereas G1 showed a 75-fold decrease in binding affinity over the same pH range. The sharp difference observed in their pH binding suggests that pH controls the physiological function of TSG-6, with a low affinity for HA at neutral pH, but with increased affinity as the pH falls below pH 7. TSG-6 and aggrecan interact with HA through structurally homologous domains and the difference in pH-dependent binding can be understood in terms of differences in the presence and topographical distribution of key regulatory amino acids in Link_TSG6 and in the related tandem Link domains in aggrecan G1.  相似文献   

20.
To understand the mechanism by which the activity of the 6-phosphofructo-2-kinase (6PF-2K) of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is stimulated by its substrate ATP, we studied two mutants of the enzyme. Mutation of either Arg-279, the penultimate basic residue within the Walker A nucleotide-binding fold in the bisphosphatase domain, or Arg-359 to Ala eliminated the activation of the chicken 6PF-2K by ATP. Binding analysis by fluorescence spectroscopy using 2'(3')-O-(N-methylanthraniloyl)-ATP revealed that the kinase domains of these two mutants, unlike that of the wild type enzyme, showed no cooperativity in ATP binding and that the mutant enzymes possess only the high affinity ATP binding site, suggesting that the ATP binding site on the bisphosphatase domain represents the low affinity site. This conclusion was supported by the result that the affinity of ATP for the isolated bisphosphatase domain is similar to that for the low affinity site in the wild type enzyme. In addition, we found that the 6PF-2K of a chimeric enzyme, in which the last 25 residues of chicken enzyme were replaced with those of the rat enzyme, could not be activated by ATP, despite the fact that the ATP-binding properties of this chimeric enzyme were not different from those of the wild type chicken enzyme. These results demonstrate that activation of the chicken 6PF-2K by ATP may result from allosteric binding of ATP to the bisphosphatase domain where residues Arg-279 and Arg-359 are critically involved and require specific C-terminal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号