共查询到19条相似文献,搜索用时 93 毫秒
1.
目的:制备尼莫地平壳聚糖-海藻酸钠水凝胶释药系统.方法:采用复凝聚法制备尼莫地平水凝胶,通过高效液相分析方法考察其对尼莫地平的缓释作用;用转蓝法研究所制水凝胶的释放度,通过改变释放介质的pH值,考察该缓释系统对pH的敏感性.结果:尼莫地平水凝胶在人工胃液中几乎不溶解,累积释放度较低,4h仅释放47%,而人工肠液中具有较高的释放度,可达91%.结论:所制尼莫地平水凝胶具有明显的缓释作用和pH敏感特性. 相似文献
2.
木质素是自然界中储量仅次于纤维素的木质纤维素资源,也是唯一的天然芳香族聚合物,其衍生的高值化产品可以应用于多个领域。木质素的高效高值高质生产是木质纤维素生物炼制的关键所在,但木质素大分子结构复杂多变、反应的活性差、官能团冗杂,制备出性能稳定的高分子材料有一定的难度。随着木质素改性的研究越来越深入,木质素复合水凝胶的应用也受到了极大的关注。本文从木质素的基本结构组成与反应特性出发,简要概括了木质素复合水凝胶的制备方法;具体介绍了木质素复合水凝胶的应用现状,包括生物传感器、控制释放材料、环境响应材料、吸附材料、电极材料以及其他材料的应用;综述了木质素复合水凝胶的最新研究与应用进展,并对木质素制备复合水凝胶的发展前景进行了评述。 相似文献
3.
目的:在支架材料上引入具有控释行为的微球,旨在通过微球包裹生长因子,通过生长因子的缓慢释放从而促进种子细胞的生长分化。方法:本实验通过在海藻酸钠水凝胶中负载具有控释功能的壳聚糖微球,并通过在微球中包栽溶茵酶从而达到控制壳聚糖降解速率的功效。实验研究了不同搅拌速度下壳聚糖微球的形貌及粒径大小,通过扫描电镜对壳聚糖微球及复合支架的形貌进行了观察,通过紫外光吸收法测试了微球的载药量及包封率,并研究了壳聚糖微球在体外的降解行为等。结果:制备的壳聚糖微球表面较光滑,溶菌酶的包封率在25.78%41.89%之间,载药量在15.20%-24.44%之间。包封溶茵酶的微胶囊在降解9天后壳聚糖分子量下降了70.40%,载荷微球的复合凝胶孔洞增多,孔洞大小均匀。结论:此复合材料有望作为栽荷软骨相关生长因子的支架模型,从而解决软骨组织工程中种子细胞匮乏的问题。 相似文献
4.
目的:在支架材料上引入具有控释行为的微球,旨在通过微球包裹生长因子,通过生长因子的缓慢释放从而促进种子细胞的生长分化。方法:本实验通过在海藻酸钠水凝胶中负载具有控释功能的壳聚糖微球,并通过在微球中包载溶菌酶从而达到控制壳聚糖降解速率的功效。实验研究了不同搅拌速度下壳聚糖微球的形貌及粒径大小,通过扫描电镜对壳聚糖微球及复合支架的形貌进行了观察,通过紫外光吸收法测试了微球的载药量及包封率,并研究了壳聚糖微球在体外的降解行为等。结果:制备的壳聚糖微球表面较光滑,溶菌酶的包封率在25.78%-41.89%之间,载药量在15.20%-24.44%之间。包封溶菌酶的微胶囊在降解9天后壳聚糖分子量下降了70.40%,载荷微球的复合凝胶孔洞增多,孔洞大小均匀。结论:此复合材料有望作为载荷软骨相关生长因子的支架模型,从而解决软骨组织工程中种子细胞匮乏的问题。 相似文献
5.
6.
目的:选择黏度适宜的高分子溶液,制备相转化水凝胶微针。方法:通过考察两种型号的聚乙烯醇本身的黏度性质、溶液温度、几种不同性质的高分子材料,包括透明质酸、预胶化淀粉等可能影响聚乙烯醇溶液黏度的因素,使用粘度计测定其黏度值并作图比较,观察溶液黏度变化的规律。将所制溶液分别制备微针以观察针形的好坏,选择合适制备相转化水凝胶微针的溶液黏度范围。结果:实验表明黏度范围在2.5万至13万m Pa·s之间的聚合物溶液较为粘稠且流动性适宜。结论:在该黏度范围内的聚合物溶液可用以制备相转化水凝胶微针,适用于工业化生产。 相似文献
7.
目的:制备与表征还原可降解的聚磺酸甜菜碱型纳米水凝胶,利用该纳米递药系统包载阿霉素(DOX)并初步评价其抗肿瘤性能。方法:利用回流沉淀聚合的方法合成含二硫键的聚磺酸甜菜碱甲基丙烯酸酯(PSBMA)纳米水凝胶及不含二硫键的PSBMA纳米凝胶(nd-PSBMA);通过粒度仪和透射电镜考察两种纳米水凝胶的粒径、形态以及稳定性;通过考察谷胱甘肽(GSH)对纳米凝胶溶液相对浊度的影响以评价还原环境对两种纳米凝胶的还原可降解性;利用纳米凝胶包载阿霉素(DOX),考察载药凝胶在GSH中的释药行为,并初步评价其对A549肿瘤细胞的杀伤作用。结果:以N, N'-双丙烯酰胱胺为交联剂制备了含二硫键的PSBMA纳米凝胶,其粒径在180~200 nm;同时以N, N'-双丙烯酰胺为交联剂制备了不含二硫键的n-PSBMA纳米凝胶。两种纳米凝胶与小鼠血清共孵育7天水合粒径仍无明显变化,表明磺酸甜菜碱型纳米凝胶具有良好的抗蛋白吸附能力。此外,PSBMA纳米凝胶在GSH溶液中迅速地降解,且降解速度与GSH浓度呈正相关;而nd-PSBMA纳米凝胶在GSH溶液中几乎不降解。载DOX的PSBMA纳米凝胶可在GSH作用下快速的释放药物而载DOX的nd-PSBMA纳米凝胶在GSH作用下缓慢的释放药物;体外细胞实验显示空白纳米凝胶和载药nd-PSBMA对A549细胞无明显毒性作用,但载DOX的PSBMA纳米凝胶可高效地杀死A549肿瘤细胞,其药效与游离DOX相仿。结论:还原可降解的PSBMA纳米水凝胶有望成为智能型控释药物载体。 相似文献
8.
DNA水凝胶作为一种生物合成分子,既具有DNA分子的特异性,生物可降解性和分子识别等特性,又具有水凝胶的高亲水性等特征.刺激响应型DNA水凝胶主要是在环境因素的刺激下,利用常规DNA序列经Watson-Crick碱基互补配对形成的DNA分支结构或多种功能核酸的特殊DNA序列形成的i-motif结构;T-A·T三螺旋结构,C-G·C +三螺旋结构及G-四链体结构等对环境的响应行为使水凝胶形成及应用.近年来,刺激响应型DNA水凝胶因其在温度,pH,光,金属离子,生物分子等单刺激因素,以及光热,金属离子,有机物,温度与pH等多刺激因素下的独特应答性质,在生物传感,生物成像,药物递送,生物材料等方面得到了广泛的应用.综述了刺激响应型DNA水凝胶的形成方法,分类及其核酸来源,形成后的表征手段以及在环境刺激下的响应行为与应用,概括了目前刺激响应型DNA水凝胶的研究热点,并就其未来发展趋势做出了预测. 相似文献
9.
为了获得更为理想的皮肤创口修复敷料,在海藻酸钠(SA)和聚丙烯酰胺(PAM)水凝胶的基础上复合人发角蛋白(KTN),制得KTN/SA/PAM水凝胶皮肤敷料.用电子万能测试机、扫描电子显微镜等对其进行表征,结果显示,KTN/SA/PAM水凝胶皮肤敷料拉伸强度为42.41 kPa,弹性模量11.19 kPa,接近人体皮肤组... 相似文献
10.
探究聚(N-异丙基丙烯酰胺)[poly(N-isopropylacrylamide)]基互穿网络(interpenetrating polymer network)温敏水凝胶(记作:IPNT)作为噬菌体内溶素Lys84递送载体的可行性,及载药水凝胶作为抗菌材料的应用潜力。以海藻酸钠和N-异丙基丙烯酰胺为原材料,通过自由基聚合的方法制备互穿网络温敏水凝胶,采用干态浸泡法负载金黄色葡萄球菌(Staphylococcus aureus)噬菌体内溶素Lys84获得载药水凝胶(IPNT-Lys84)。通过红外光谱仪、扫描电子显微镜(scanning electron microscopy,SEM)、差示扫描量热仪(differential scanning calorimetry,DSC)对水凝胶载药前后的物理性能进行表征,并研究水凝胶溶胀、退溶胀以及内溶素Lys84释放情况、在不同温度及不同浓度药液浸泡的抗菌性能。结果表明,IPNT-Lys84水凝胶孔洞均匀,低临界溶解温度(lower critical solution temperature,LCST)为32°C;水凝胶平衡溶胀度为30 g/g,退溶胀时失水率为88%;在37°C时内溶素释放率在6 h内达到70%以上;IPNT-Lys84水凝胶杀菌率达99.9%以上。研究表明,采用IPNT递送内溶素Lys84具有可行性,IPNT-Lys84水凝胶有望成为针对多重耐药金黄色葡萄球菌的有效抗菌材料。 相似文献
11.
Rafaela I. S. Ladeira Ázar Túlio Morgan Márcio H. P. Barbosa Valéria M. Guimarães Eduardo Ximenes Michael Ladisch 《Biotechnology and bioengineering》2019,116(7):1584-1593
Lignin plays an important functional and structural role in plants, but also contributes to the recalcitrance of lignocellulosic biomass to hydrolysis. This study addresses the influence of lignin in hydrolysis of sugarcane bagasse from conventional bred lines (UFV260 and UFV204) that were selected from 432 field-grown clones. In addition to higher sugar production, bagasse clone UFV204 had a small, but statistically significant, lower insoluble lignin content compared with clone UFV260 (15.5% vs, 16.6%) and also exhibited a significantly higher cellulose conversion to glucose (81.3% vs. 63.3%) at a cellulase loading of 5 (filter paper unit) FPU/g of glucan or 3 FPU/g total solids for liquid hot water pretreated bagasse (200°C, 10 min). The enzyme loading was further decreased by 50% to 2.5 FPU/g glucan and resulted in a similar glucan conversion (88.5%) for clone UFV204 when the bagasse was preincubated with bovine serum albumin at pH 4.8 and nonproductive binding of cellulase components was blocked. Comparison of Langmuir adsorption isotherms and differential adsorption of the three major cellulolytic enzyme components endoglucanase, cellobiohydrolase, and β-glucosidase help to explain differences due to lignin content. 相似文献
12.
采用涂布平板法从甘蔗渣泥中共分离得到5株优势真菌,分别为头孢霉属(Cephalosporium)、曲霉属(Asper-gillus)、木霉属(Trichoderma)、毛霉属(Mucor)和地霉属(Geotrichum)。对分离得到的真菌进行产酶特性的研究。采用两种不同的产酶培养基(培养基Ⅴ,培养基Ⅵ),这两种培养基的无机盐成分、含量相同,它们的主要差别为碳源不同。培养基Ⅴ的主要碳源为葡萄溏,培养基Ⅵ的主要碳源为甘蔗渣(过60目筛)。结果表明:分离得到的真菌在这两种培养基中的产酶酶活力相差很大,最优菌株为木霉属Q-3,在培养基Ⅵ中产酶酶活最高,赖锰过氧化物酶和漆酶最高活性分别为4.2245U/mL、1.2525U/mL,相对应的纤维素酶活性较低。 相似文献
13.
Yoon-Jeong Park Jin Chang Pen-Chung Chen Victor Chi-Min Yang 《Biotechnology and Bioprocess Engineering》2001,6(5):326-331
With the aim of developing a pH-sensitive controlled drug release system, a poly (L-lysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel
was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release
at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing
another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization
method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers
were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared
showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations
of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase.
Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling
of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery
platform to modulate drug release by pH-sensitivity and ionic interaction. 相似文献
14.
A novel pH-responsive hydrogel (CHC) composed of N-carboxyethyl chitosan (CEC) and N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) was synthesized by the redox polymerization technique. Turbidimetric titrations were used to determine the stoichiometric ratio of these two chitosan derivatives. The hydrogel was characterized by FT-IR, thermal gravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The dynamic transport of water showed that the hydrogel reached equilibrium within 48 h. The swelling ratio of CHC hydrogel depended significantly on the pH of the buffer solution. The performance of the CHC as a matrix for the controlled release of BSA was investigated. It was found that the release behavior was determined by pH value of the medium as well as the intermolecular interaction between BSA and the hydrogels. 相似文献
15.
Biswajit Mukherjee Kousik Santra Gurudutta Pattnaik Soma Ghosh 《International journal of nanomedicine》2008,3(4):487-496
Controlled drug delivery technology of proteins/peptides from biodegradable nanoparticles has emerged as one of the eminent areas to overcome formulation associated problems of the macromolecules. The purpose of the present investigation was to develop protein-loaded nanoparticles using biodegradable polymer poly l-lactide-co-glycolidic acid (PLGA) with bovine serum albumin (BSA) as a model protein. Despite many studies available with PLGA-based protein-loaded nanoparticles, production know-how, process parameters, protein loading, duration of protein release, narrowing polydispersity of particles have not been investigated enough to scale up manufacturing of protein-loaded nanoparticles in formulations. Different process parameters such as protein/polymer ratio, homogenizing speed during emulsifications, particle surface morphology and surface charges, particle size analysis and in-vitro protein release were investigated. The in-vitro protein release study suggests that release profile of BSA from nanoparticles could be modulated by changing protein-polymer ratios and/or by varying homogenizing speed during multiple-emulsion preparation technique. The formulation prepared with protein-polymer ratio of 1:60 at 17,500 rpm gave maximum protein-loading, minimum polydispersion with maximally sustained protein release pattern, among the prepared formulations. Decreased (10,000 rpm) or enhanced (24,000 rpm) homogenizing speeds resulted in increased polydispersion with larger particles having no better protein-loading and -release profiles in the present study. 相似文献
16.
We described the design of uniform microencapsulates with almost 100% encapsulation efficiency, synthesized without organic solvents, via microfluidic spray drying of water-based dispersions of pH-responsive methacrylic acid polymers (Eudragit® L 30D-55). The effects of incorporating water-based network-forming materials in the formulations on pH-responsiveness and controlled release patterns of enteric microparticles were observed. Acid hydrolysed tetraethoxysilane (TEOS) was used to form an interpenetrating, rigid framework of silica, whereas Eudragit® NE (a copolymer based on ethyl acrylate and methyl methacrylate) was added to produce a more flexible polymeric network. The spray-dried microparticles generally displayed crumbled or buckled morphologies dependent on drying temperatures, due to large hydrodynamic sizes of solutes in feed dispersions. The drug release kinetics of microparticles were sensitive to the type and the added amount of network-forming materials, due to different colloidal interactions between Eudragit® L and either silica or the copolymer. This study demonstrated a strategy to design enteric microparticles with different microstructural properties and drug release behaviours through understanding of colloidal interactions between constituents of matrix materials. 相似文献
17.
Elaine C. Ramires Jackson D. Megiatto Jr. Christian Gardrat Alain Castellan Elisabete Frollini 《Biotechnology and bioengineering》2010,107(4):612-621
In the present study, the main focus was the characterization and application of the by‐product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic‐type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p‐hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin–formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m?1 for a 40 wt% sisal fiber‐reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber‐reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107:612–621. © 2010 Wiley Periodicals, Inc. 相似文献
18.
The purpose of this study was to investigate the effect of 2 additives, poly(ethylene glycol (PEG) 1000 and 1,2,3-tridecanoyl glycerol (tricaprin), on the physico-chemical characteristics and in vitro release of a model protein, bovine serum albumin (BSA), form poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. BSA-loaded microspheres were prepared by the double emulsion solvent evaporation method. Additives were incorporated into microspheres to modify the release of protein. The addition of PEG 1000 and tricaprin changed the surface characteristics of microspheres from smooth and nonporous to porous and dimpled, respectively. The in vitro release profiles showed that the additives significantly (P<0.05) increased the early-stage release of BSA from microspheres. 相似文献
19.
Ronidazole (1-methyl-5-nitroimidazole-2-methanol carbamate) is reductively metabolized by liver microsomal and purified NADPH-cytochrome P-450 reductase preparations to reactive metabolites that covalently bind to tissue proteins. Kinetic experiments and studies employing immobilized cysteine or blocked cysteine thiols have shown that the principal targets of protein alkylation ara cysteine thiols. Furthermore, ronidazole specifically radiolabelled with 14C in the 4,5-ring, N-methyl or 2-methylene positions give rise to equivalent apparent covalent binding suggesting that the imidazole nucleus is retained in the bound residue. In contrast, the carbonyl-14C-labeled ronidazole gives approx. 6--15-fold less apparent covalent binding indicating that the carbamoyl group is lost during the reaction leading to the covalently bound metabolite. The conversion of ronidazole to reactive metabolite(s) is quantitative and reflects the amazing efficiency by which this compound is activated by microsomal enzymes. However, only about 5% of this metabolite can be accounted for as protein-bound products under the conditions employed in these studies. Consequently, approx. 95% of the reactive ronidazole metabolite(s) can react with other constituents in the reaction media such as other thiols or water. Based on these results, a mechanism is proposed for the metabolic activation of ronidazole. 相似文献