首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raf1 kinase inhibitor protein (RKIP) negatively regulates the Raf1/MEK/ERK pathway which is vital for cell growth and differentiation. It is also a biomarker in clinical cancer diagnosis. RKIP binds to the N-terminus of Raf1 kinase but little is known about the structural basis of RKIP binding with Raf1. Here, we demonstrate that the N-terminus of human Raf1 kinase (hRaf11-147aa) binds with human RKIP (hRKIP) at its ligand-binding pocket, loop “127–149”, and the C-terminal helix by NMR experiments. D70, D72, E83, Y120, and Y181 were further verified as the key residues participating in the interaction of hRKIP and hRaf11-147aa. G143-R146 fragment was also critical for hRKIP binding with hRaf11-147aa, for its deletion decreased the binding affinity around 300 times, from 154 to 0.46 mM?1. Our results provide important structural clues for designing the lead compound that disrupts RKIP–Raf1 interaction.  相似文献   

2.
Protein kinase C (PKC) regulates activation of the Raf-1 signaling cascade by growth factors, but the mechanism by which this occurs has not been elucidated. Here we report that one mechanism involves dissociation of Raf kinase inhibitory protein (RKIP) from Raf-1. Classic and atypical but not novel PKC isoforms phosphorylate RKIP at serine 153 (Ser-153). RKIP Ser-153 phosphorylation by PKC either in vitro or in response to 12-O-tetradecanoylphorbol-13-acetate or epidermal growth factor causes release of RKIP from Raf-1, whereas mutant RKIP (S153V or S153E) remains bound. Increased expression of PKC can rescue inhibition of the mitogen-activated protein (MAP) kinase signaling cascade by wild-type but not mutant S153V RKIP. Taken together, these results constitute the first model showing how phosphorylation by PKC relieves a key inhibitor of the Raf/MAP kinase signaling cascade and may represent a general mechanism for the regulation of MAP kinase pathways.  相似文献   

3.
Inhibition of G-protein-coupled receptor kinase 2 (GRK2) is an emerging treatment option for heart failure. Because GRK2 is also indispensable for growth and development, we analyzed the impact of GRK2 inhibition on cell growth and proliferation. Inhibition of GRK2 by the dominant-negative GRK2-K220R did not affect the proliferation of cultured cells. In contrast, upon xenograft transplantation of cells into immunodeficient mice, the dominant-negative GRK2-K220R or a GRK2-specific peptide inhibitor increased tumor mass. The enhanced tumor growth upon GRK2 inhibition was attributed to the growth-promoting MAPK pathway because dual inhibition of the GRK2 and RAF-MAPK axis by the Raf kinase inhibitor protein (RKIP) did not increase tumor mass. The MAPK cascade contributed to the cardioprotective profile of GRK2 inhibition by preventing cardiomyocyte death, whereas dual inhibition of RAF/MAPK and GRK2 by RKIP induced cardiomyocyte apoptosis, cardiac dysfunction, and signs of heart failure. Thus, cardioprotective signaling induced by GRK2 inhibition is overlapping with tumor growth promotion.  相似文献   

4.
Raf kinase inhibitory protein (RKIP or PEBP) is an inhibitor of the Raf/MEK/MAP kinase signaling cascade and a suppressor of cancer metastasis. We now show that RKIP associates with centrosomes and kinetochores and regulates the spindle checkpoint in mammalian cells. RKIP depletion causes decreases in the mitotic index, the number of metaphase cells, and traversal times from nuclear envelope breakdown to anaphase, and an override of mitotic checkpoints induced by spindle poisons. Raf-1 depletion or MEK inhibition reverses the reduction in the mitotic index, whereas hyperactivation of Raf mimics the RKIP-depletion phenotype. Finally, RKIP depletion or Raf hyperactivation reduces kinetochore localization and kinase activity of Aurora B, a regulator of the spindle checkpoint. These results indicate that RKIP regulates Aurora B kinase and the spindle checkpoint via the Raf-1/MEK/ERK cascade and demonstrate that small changes in the MAP kinase (MAPK) pathway can profoundly impact the fidelity of the cell cycle.  相似文献   

5.
The G protein-coupled receptor kinases (GRKs) are best known for their role in phosphorylating and desensitising G protein-coupled receptors (GPCRs). The GRKs also regulate signalling downstream of other families of receptors and have a number of non-receptor substrates and binding partners. Here we identify RhoAGTP and Raf1 as novel binding partners of GRK2 and report a previously unsuspected function for this kinase. GRK2 is a RhoA effector that serves as a RhoA-activated scaffold protein for the ERK MAP kinase cascade. The ability of GRK2 to bind to Raf1, MEK1 and ERK2 is dependent on RhoAGTP binding to the catalytic domain of the kinase. Exogenous GRK2 has previously been shown to increase ERK activation downstream of the epidermal growth factor receptor (EGFR). Here we find that GRK2-mediated ERK activation downstream of the EGFR is Rho-dependent and that treatment with EGF promotes RhoAGTP binding and ERK scaffolding by GRK2. Depletion of GRK2 expression by RNAi reveals that GRK2 is required for EGF-induced, Rho- and ERK-dependent thymidine incorporation in vascular smooth muscle cells (VSMCs). We therefore hypothesise that Rho-dependent ERK MAPK scaffolding by GRK2 downstream of the EGFR may have an important role in the vasculature, where increased levels of both GRK2 and RhoA have been associated with hypertension.  相似文献   

6.
Raf kinase inhibitory protein (RKIP; also known as phosphatidylethanolamine-binding protein or PEBP) is a modulator of the Raf/MAPK signaling cascade and a suppressor of metastatic cancer. Here, we show that RKIP inhibits MAPK by regulating Raf-1 activation; specifically, RKIP acts subsequent to Raf-1 membrane recruitment, prevents association of Raf-1 and p21-activated kinase (PAK), and blocks phosphorylation of the Raf-1 kinase domain by PAK and Src family kinases. Mutation of the PAK and Src phosphorylation sites on Raf-1 to aspartate, a phosphate mimic, prevented RKIP association with or inhibition of Raf-1 signaling. Interestingly, although RKIP can interact with B-Raf, RKIP depletion had no effect on activation of B-Raf. Because c-Raf-1 and B-Raf are both required for maximal MAPK stimulation by epidermal growth factor in neuronal and epithelial cell lines, we determined whether RKIP significantly affects MAPK signaling. In fact, RKIP depletion increased not only the amplitude but also the sensitivity of MAPK and DNA synthesis to epidermal growth factor stimulation by up to an order of magnitude. These results indicate that selective modulation of c-Raf-1 but not B-Raf activation by RKIP can limit the dynamic range of the MAPK signaling response to growth factors and may play a critical role in growth and development.  相似文献   

7.
8.
In gastrointestinal smooth muscle cells, VPAC(2) receptor desensitization is exclusively mediated by G protein-coupled receptor kinase 2 (GRK2). The present study examined the mechanisms by which acetylcholine (ACh) acting via M(3) receptors regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. Vasoactive intestinal peptide induced VPAC(2) receptor phosphorylation, internalization, and desensitization in both freshly dispersed and cultured smooth muscle cells. Costimulation with ACh in the presence of M(2) receptor antagonist (i.e., activation of M(3) receptors) inhibited VPAC(2) receptor phosphorylation, internalization, and desensitization. Inhibition was blocked by the selective protein kinase C (PKC) inhibitor bisindolylmaleimide, suggesting that the inhibition was mediated by PKC, derived from M(3) receptor activation. Similar results were obtained by direct activation of PKC with phorbol myristate acetate. In the presence of the M(2) receptor antagonist, ACh induced phosphorylation of Raf kinase inhibitory protein (RKIP), increased RKIP-GRK2 association, decreased RKIP-Raf-1 association, and stimulated ERK1/2 activity, suggesting that, upon phosphorylation by PKC, RKIP dissociates from its known target Raf to associate with, and block the activity of, GRK2. In muscle cells expressing RKIP(S153A), which lacks the PKC phosphorylation site, RKIP phosphorylation was blocked and the inhibitory effect of ACh on VPAC(2) receptor phosphorylation, internalization, and desensitization and the stimulatory effect on ERK1/2 activation were abolished. This study identified a novel mechanism of cross-regulation of G(s)-coupled receptor phosphorylation and internalization by G(q)-coupled receptors. The mechanism involved phosphorylation of RKIP by PKC, switching RKIP from association with Raf-1 to association with, and inhibition of, GRK2.  相似文献   

9.
Proteins like Rafkinase inhibitory protein (RKIP) that serve as modulators of signaling pathways, either by promoting or inhibiting the formation of productive signaling complexes through protein-protein interactions, have been demonstrated to play an increasingly important role in a number of cell types and organisms. These proteins have been implicated in development as well as the progression of cancer. RKIP is a particularly interesting regulator, as it is a highly conserved, ubiquitously expressed protein that has been shown to play a role in growth and differentiation in a number of organisms and can regulate multiple signaling pathways. RKIP is also the first MAP kinase signaling modulator to be identified as playing a role in cancer metastasis, and identification of the mechanism by which it regulates Raf-1 activation provides new targets for theraoeutic intervention.  相似文献   

10.
Raf kinase inhibitor protein (RKIP) was originally identified as a protein that bound membrane phospholipids and was named phosphatidylethanolamine binding protein-2 (PEBP-2). RKIP was than identified as a protein that bound Raf and blocked its ability to phosphorylate MEK, thus earning its new name of RKIP. Subsequent to identification of its role in the Raf:MEK pathway, RKIP has been demonstrated to regulate several other signaling pathways including G-protein signaling and NF-kappaB signaling. Its involvement in several signaling pathways has engendered RKIP to contribute to several physiological processes including membrane biosynthesis, spermatogenesis, neural development, and apoptosis. RKIP is expressed in many tissues including brain, lung, and liver and thus, dysregulation of RKIP expression or function has potential to contribute to pathophysiology in these tissues. Loss of RKIP expression in prostate cancer cells confers a metastatic phenotype on them. Additionally, restoration of RKIP expression in a metastatic prostate cancer cell line does not effect primary tumor growth, but it does inhibit prostate cancer metastasis. These parameters identify RKIP as a metastasis suppressor gene. In this review, the biology and pathophysiology of RKIP is described.  相似文献   

11.
Differential gene expression analysis of human blood monocytes has identified the Raf kinase inhibitor protein (RKIP) as a continuously upregulated gene in macrophage and dendritic cell maturation. Using realtime RT-PCR and Western blot analysis we were able to confirm the initial DNA-microarray findings of RKIP induction on mRNA and protein levels. RKIP upregulation in primary cells and overexpression in THP-1 cells did not alter ERK activity but strongly reduced the amount of the NFkappaB subunit p65 in the nucleus. mRNA levels and cell surface expression of maturation markers including the integrin CD11c and the scavenger receptor CD36 were significantly increased in RKIP transfected THP-1 cells. Our data show for the first time that RKIP is upregulated during macrophage and dendritic cell differentiation on mRNA and protein levels and we conclude that RKIP contributes to the monocytic differentiation process via inhibition of the NFkappaB signaling cascade independent from the canonical Ras/Raf/MEK/ERK pathway.  相似文献   

12.
Raf Kinase Inhibitory Protein (RKIP) is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.  相似文献   

13.
G-protein-coupled-receptor kinase 2 (GRK2) plays a key role in the modulation of G-protein-coupled-receptor (GPCR) signaling by both phosphorylating agonist-occupied GPCRs and by directly binding to activated Galphaq subunits, inhibiting downstream effectors activation. The GRK2/Galphaq interaction involves the N-terminal region of the kinase that displays homology to regulators of G-protein signaling (RGS) proteins. We have previously reported that upon GPCR stimulation, GRK2 can be phosphorylated by c-Src on tyrosine residues that are present in the RGS-homology (RH) region of this kinase. Here, we demonstrate that c-Src kinase activity increases the interaction between GRK2 and Galphaq. Tyrosine phosphorylation of GRK2 appears to be critically involved in the modulation of this interaction since the stimulatory effect of c-Src is not observed with a GRK2 mutant with impaired tyrosine phosphorylation (GRK2 Y13,86,92F), whereas a mutant that mimics GRK2 tyrosine phosphorylation in these residues displays an increased interaction with Galphaq. As evidence for a physiological role of this modulatory mechanism, activation of the muscarinic receptor M1, a Galphaq-coupled receptor, promotes an increase in GRK2/Galphaq co-immunoprecipitation that parallels the enhanced GRK2 phosphorylation on tyrosine residues. Moreover, c-Src activation enhances inhibition of the Galphaq/phospholipase Cbeta signaling pathway in intact cells, in a GRK2-tyrosine-phosphorylation-dependent manner. Our results suggest a feedback mechanism by which phosphorylation of GRK2 by c-Src increases both GRK2 kinase activity towards GPCRs and its specific interaction with Galphaq subunits, leading to a more rapid switch off of Galphaq-mediated signaling.  相似文献   

14.
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.Raf kinase inhibitory protein (RKIP/PEBP1) is a signaling modulator that regulates key signal transduction cascades in mammalian cells (reviewed in reference 16). A negative regulator of mitogen-activated protein kinase (MAPK) signaling (42), RKIP inhibits Raf kinase by binding directly to Raf-1, thereby preventing the phosphorylation and activation of Raf-1 (8, 38). RKIP functions as a regulator of the spindle checkpoint and promotes genomic stability by preventing MAPK from inhibiting Aurora B kinase (10). Consistent with this role, RKIP suppresses lung metastasis by prostate tumor cells in an orthotopic murine model (15). RKIP may be a general metastasis suppressor for solid tumors, since RKIP expression is low or undetectable in prostate and breast tumors, melanoma, hepatocellular carcinoma, and colorectal tumors (1, 2, 14, 15, 19, 34). Finally, RKIP suppresses NF-κB activation (43), inhibits G protein-coupled receptor (GPCR) kinase 2 (GRK2)-mediated downregulation of GPCRs (28), and potentiates the efficacy of chemotherapeutic agents (5). Thus, RKIP regulates three key mammalian signaling pathways involving MAPK, GPCR, and NF-κB signaling.RKIP is a member of the phosphatidylethanolamine binding protein (PEBP) family, which extends from bacteria to humans and consists of more than 400 proteins (16, 33). X-ray crystallographic studies have demonstrated that highly conserved sequences cluster around a pocket capable of binding anions, including o-phosphorylethanolamine (PE), acetate, and cacodylate (3, 35). This pocket is the only clearly identifiable feature for potential ligand binding within the RKIP architecture. Although the ligand-binding pocket shares homology with phospholipid binding domains, PEBP associates with phospholipid membranes primarily via peripheral, ionic interactions rather than more integrally inserting itself into the membrane (reference 39 and data not shown). The fact that RKIP interacts with protein targets such as Raf-1 and is phosphorylated by other protein kinases raises the possibility that the pocket mediates protein-protein interactions.The physiological role of the ligand-binding pocket is illustrated by studies of plant and yeast PEBPs. In the plant homologue of RKIP, mutation of the conserved DPDxP motif within the pocket (the equivalent of P74L) causes tomato plants to switch developmentally from shoot growth to flowering (32). The Saccharomyces cerevisiae RKIP/PEBP homologue, Tfs1p, functions as a negative regulator of RasGAP (Ira2), leading to upregulation of yeast Ras, activation of adenylyl cyclase, and increased cyclic AMP activation of protein kinase A (6). Yeast Ras signaling is inhibited by the corresponding P74L mutation in the pocket of Tfs1p, blocking Tfs1p interaction with Ira2. These results highlight the functional importance of the pocket among eukaryotic RKIP/PEBP family members. However, the molecular mechanism by which the pocket influences RKIP function and the significance of ligand binding to the pocket are unknown.Previous work has established the phosphorylation-mediated control of RKIP function. RKIP binds Raf-1, inhibiting Raf-1 activation and consequent signaling to MAPK (38, 42). When RKIP residue S153 is phosphorylated by protein kinase C (PKC), which occurs following cell stimulation with growth factors such as epidermal growth factor (EGF) or serum, RKIP can no longer bind to Raf-1, and thus it is inactivated as a Raf-1 inhibitor (8). Phosphorylation at S153 promotes the association of RKIP with, and inhibition of, GRK2, a kinase that phosphorylates and downregulates GPCRs such as the β-adrenergic receptor (28). Thus, S153 phosphorylation of RKIP is a key regulatory element of its association with and inhibition of different targets. The importance of the pocket and that of S153 phosphorylation have been independently established, but it is not clear whether these regulatory elements are functionally linked. Addressing this question is important for advancing our understanding of the molecular mechanism of RKIP function, which is likely to be pertinent to many RKIP/PEBP family members.In the present study, using cellular, biochemical, and structural approaches, we demonstrate that the highly conserved ligand-binding pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP function. Our results suggest that, in contrast to the mechanisms for other pocket-containing single-domain proteins, the structure and/or dynamics of the pocket influences RKIP interaction with and phosphorylation by kinases. This mechanism is likely conserved among RKIP homologues in eukaryotes.  相似文献   

15.
16.

Background

Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function.

Methods/Findings

We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP−/−) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP−/− MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle.

Conclusions/Significance

These results suggest that locostatin''s effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.  相似文献   

17.
Raf kinase inhibitory protein (RKIP) is a metastasis suppressor whose expression is reduced in nasopharyngeal carcinoma (NPC) tissues and is absent in NPC metastases. To investigate the effect of RKIP on radiosensitivity of NPC, high metastatic 5‐8F with low RKIP expression and non‐metastatic 6‐10B with high RKIP expression were stably transfected with plasmids that expressed sense and antisense RKIP cDNA. Overexpression of RKIP sensitized 5‐8F cells to radiation‐induced cell death, G2‐M cell cycle arrest and apoptosis. In contrast, downexpression of RKIP in 6‐10B cells protected cells from radiation‐induced cell death, G2‐M cell cycle arrest and apoptosis. In addition, RKIP expression altered the radiosensitivity of NPC cells through MEK and ERK phosphorylation changes of Raf‐1/MEK/ERK signaling pathway. We further investigated the RKIP expression in NPC patients and its association with patients' survival after radiotherapy. Downexpression of RKIP was significantly correlated with advanced clinical stage, lymph node metastasis and radioresistance. Furthermore, survival curves showed that patients with RKIP downexpression had a poor prognosis and induced relapse. Multivariate analysis confirmed that RKIP expression was an independent prognostic indicator. The data suggested that RKIP was a potential biomarker for the radiosensitivity and prognosis of NPC, and its dysregulation might play an important role in the radioresistance of NPC. J. Cell. Biochem. 110: 975–984, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.  相似文献   

19.
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (RasGTP) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (RasGDP) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with RasGDP. Most of our designed mutations narrow the gap between the affinity of Raf for RasGTP and RasGDP, producing the desired shift in binding specificity towards RasGDP. A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards RasGDP. The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of RasGDP bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the RasGDP·Raf mutant complex is found in a conformation similar to that of RasGTP and not RasGDP. Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in RasGTP is likely to explain the natural low affinity of Raf and other Ras effectors to RasGDP. Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch.  相似文献   

20.
Raf kinase inhibitor protein (RKIP) regulates growth and differentiation signaling of mitogen-activated protein kinases (MAPK), GRK2 and NF-kappaB pathways each of which regulates cytotrophoblast differentiation and normal placental development. We show here that RKIP is expressed in human normal and preeclampic placentas as detected by immunostaining. RKIP was detected in villous cytotrophoblast in normal placenta and switched to syncytiotrophoblast in pre-eclampsia (PE)-complicated pregnancies. RKIP was also localized in extravillous cytotrophoblast of cell islands and cell columns both in normal and in PE placentas, although staining was less uniform in the latter specimens. In order to test RKIP involvement in cytotrophoblast function, we performed in vitro studies on HTR-8/SVneo cells, a first trimester cytotrophoblast cell line. We show that the RKIP inhibitor locostatin reduces ERK phosphorylation and impairs HTR-8/SV neo cells motility in wound closure experiments. We also document the presence of GRK2 mRNA, the reduction of phosphorylated RKIP expression by locostatin and the induction of PAI mRNA expression in HTR-8/SV neo cells, suggesting the involvement of GRK2 and NF-kappaB pathways in these cells. In conclusion, our work provides evidence that RKIP is a novel factor expressed in cytotrophoblast cells where it likely regulates cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号