首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heart and skeletal muscle inflammation (HSMI) is a disease that affects farmed Atlantic salmon Salmo salar L. several months after the fish have been transferred to seawater. Recently, a new virus called piscine reovirus (PRV) was identified in Atlantic salmon from an outbreak of HSMI and in experimentally challenged fish. PRV is associated with the development of HSMI, and has until now only been detected in Atlantic salmon. This study investigates whether the virus is also present in wild fish populations that may serve as vectors for the virus. The virus was found in few of the analyzed samples so there is probably a more complex relationship that involves several carriers and virus -reservoirs.  相似文献   

3.
The first cases of heart and skeletal muscle inflammation (HSMI), in Atlantic salmon Salmo salar were registered in 1999 in the Hitra/Fr?ya area of Norway. The disease has since spread south to Rogaland, i.e. the southernmost county with salmon farming in Norway. The disease outbreaks usually start 5 to 9 mo after release into seawater but may occur as early as 2 wk after sea release. The present study focuses on possible pathogens associated with HSMI. It was not possible to find any parasites or bacteria that could explain HSMI, and none of the well-known viruses (infectious salmon anaemia virus, Norwegian salmonid alphavirus, infectious pancreatic necrosis virus, Atlantic salmonid paramyxovirus) were consistently present. Use of transmission electron microscopy showed the presence of epitheliocystis agent in 3 of 4 farms included in this study, and several virus-like particles. Type I and Type II virus particles, previously described for salmon suffering from haemorrhagic smolt syndrome (HSS), and erythrocytic inclusion body syndrome (EIBS) virus were consistently present in salmon suffering from HSMI in all 4 farms included in this study. The 2 HSS viruses (Type I and Type II) were also cultured in Atlantic salmon kidney (ASK) cells from salmon suffering from HSMI. However, a causal relationship between the observed virus particles and HSMI remains to be demonstrated.  相似文献   

4.
5.
Heart and Skeletal Muscle Inflammation (HSMI) is an emerging viral disease caused by a novel Atlantic salmon reovirus (ASRV) affecting farmed fish. Primary symptoms associated with HSMI include myocardial and skeletal muscle necrosis indicating a severe inflammatory process. Recently, we applied the concept of clinical nutrition to moderate the long-term inflammatory process associated with HSMI in salmon subjected to experimental ASRV challenge. The use of functional feeds with lower lipid (hence energy) content reduced the inflammatory response to ASRV infection and the severity of associated heart lesions. The aim of the present study was to elucidate possible mechanisms underpinning the observed effects of the functional feeds, focussing on eicosanoid and fatty acid metabolism in liver and head kidney. Here we show that liver was also a site for histopathological lesions in HSMI showing steatosis reflecting impaired lipid metabolism. This study is also the first to evaluate the expression of a suite of key genes involved in pathways relating diet and membrane phospholipid fatty acid compositions, and the inflammatory response after ASRV infection. The expression of hepatic Δ6 and Δ5 desaturases was higher in fish fed the functional feeds, potentially increasing their capacity for endogenous production and availability of anti-inflammatory EPA. Effects on mobilization of lipids and changes in the LC-PUFA composition of membrane phospholipids, along with significant changes in the expression of the genes related to eicosanoid pathways, showed the important role of the head kidney in inflammatory diseases caused by viral infections. The results from the present study suggest that clinical nutrition through functional feeding could be an effective complementary therapy for emerging salmon viral diseases associated with long-term inflammation.  相似文献   

6.

Background

Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV.

Results

Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions.

Conclusions

Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-462) contains supplementary material, which is available to authorized users.  相似文献   

7.
Heart and Skeletal Muscle Inflammation (HSMI), recently associated with a novel Atlantic salmon reovirus (ASRV), is currently one of the most prevalent inflammatory diseases in commercial Atlantic salmon farms in Norway. Mortality varies from low to 20%, but morbidity can be very high, reducing growth performance and causing considerable financial impact. Clinical symptoms, including myocarditis, myocardial and red skeletal muscle necrosis, correlate with the intensity of the inflammatory response. In the present study, the effects of two functional feeds (FF1 and FF2) were compared to a standard commercial reference feed (ST) in Atlantic salmon subjected to an ASRV challenge. The functional feeds had reduced levels of total lipid and digestible energy, and different levels and proportions of long-chain polyunsaturated fatty acids (LC-PUFA). The objective was to determine whether these feeds could provide effective protection by decreasing the inflammatory response associated with HSMI. Histopathology, viral load, fatty acid composition and gene expression of heart tissue were assessed over a period of 16 weeks post-infection with ASRV. The viral load and histopathology scores in heart tissue in response to ASRV infection were reduced in fish fed both functional feeds, with FF1 showing the greatest effect. Microarray hierarchical cluster analysis showed that the functional feeds greatly affected expression of inflammation/immune related genes over the course of the ASRV infection. Viral load correlated with up-regulation of pro-inflammatory genes at the early-mid stages of infection in fish fed the ST diet. Expression of inflammatory genes 16-weeks after ASRV challenge reflected the difference in efficacy between the functional feeds, with fish fed FF1 showing lower expression. Thus, severity of the lesions in heart tissue correlated with the intensity of the innate immune response and was associated with tissue fatty acid compositions. The present study demonstrated that dietary modulation through clinical nutrition had major influences on the development and severity of the response to ASRV infection in salmon. Thus, HSMI was reduced in fish fed the functional feeds, particularly FF1. The modulation of gene expression between fish fed the different feeds provided further insight into the molecular mechanisms and progression of the inflammatory and immune responses to ASRV infection in salmon.  相似文献   

8.
Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch''s postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations.  相似文献   

9.
10.
The microsporidian Paranucleospora theridion was discovered in Atlantic salmon Salmo salar suffering from proliferative gill disease in a marine farm in western Norway in 2008. The parasite develops in cells of the reticuloendothelial system, cells important for normal immune function. The aim of this study was to see if P. theridion could play a part in some of the diseases with unclear causes in salmon production in Norway, i.e. proliferative gill disease (PGI), pancreas disease (PD), heart and skeletal muscle inflammation (HSMI) and cardiomyopathy syndrome (CMS). P. theridion was present in all areas with salmon farming in Norway, but high prevalence and densities of the parasite in salmon and salmon lice were only seen in southern Norway. This region is also the main area for PGI and PD in Norway. Quantification of pathogens associated with PGI, PD, HSMI and CMS diagnoses showed that P. theridion levels are high in southern Norway, and may therefore play a role in susceptibility and disease development. However, among the different diagnoses, fish with PGI are particularly heavily infected with P. theridion. Therefore, P. theridion appears as a possible primary agent in cases with high mortality in connection with PGI in western Norway.  相似文献   

11.
The newly described piscine reovirus (PRV) appears to be associated with the development of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon Salmo salar L. PRV seems to be ubiquitous among fish in Norwegian salmon farms, but high viral loads and tissue distribution support a causal relationship between virus and disease. In order to improve understanding of the distribution of PRV in the salmon production line, we quantified PRV by using real-time PCR on heart samples collected at different points in the life cycle from pre-smolts to fish ready for slaughter. PRV positive pre-smolts were found in about 36% of the freshwater cohorts and a general increase in viral load was observed after their transfer to seawater. A reduction in viral loads was recorded when fish approached slaughter (18 mo in sea cages). Sequencing of positive samples did not support the hypothesis that outbreaks are caused by the spreading of a particular (virulent) strain of PRV.  相似文献   

12.
Single cell suspensions were derived from the gills of dab Limanda limanda and Atlantic salmon Salmo salar which were free from blood cell contamination. Gills were perfused with heparinized saline before the cells were liberated from their resident position using a procedure employing chelating agents and collagenase digestion. Cells were characterized using light and electron microscopy as well as histochemical staining. The results indicate that the cell types resident in the gill tissue should be capable of expressing local immune competence. Small and large lymphocytes, macrophages, neutrophils, eosinophilic granule cells, goblet cells, chloride cells and cells of unusual morphology were identified especially the presence of goblet cells apparently within epithelial-like cells.  相似文献   

13.
Hemocytes of Mytilus edulis were examined cytologically and cytochemically. On the basis of structure, staining reactions, and phagocytic behavior, they were divided into two main groups: basophilic hemocytes and eosinophilic granular hemocytes (granulocytes). The basophilic cells were further divided into small lymphocytes and larger phagocytic macrophages reactive for lysosomal hydrolases. Mitosis was observed in granulocytes and in small lymphoid cells, believed to be the stem cells for the basophilic cell line. A few cells appeared to be intermediate between lymphocytes and small granulocytes. Macrophages were the main cell type involved in the clearance of injected carbon particles. However, granulocytes did show some phagocytic activity. Brown cells displaying apparent amoebocytic behavior were found to contain Fe3+ and Pb2+ in cytoplasmic inclusions, some of which were also reactive for β-glucuronidase and glucosaminidase. These cells appear to have a separate origin from the hemocytes.  相似文献   

14.
Ichii O  Otsuka S  Namiki Y  Hashimoto Y  Kon Y 《PloS one》2011,6(11):e27783
Primary causes of urinary tract obstruction that induces urine retention and results in hydronephrosis include uroliths, inflammation, and tumors. In this study, we analyzed the molecular pathology of ureteritis causing hydronephrosis in laboratory rodents.F2 progenies of C57BL/6 and DBA/2 mice were studied histopathologically and by comprehensive gene expression analysis of their ureters. Incidence of hydronephrosis was approximately 5% in F2 progenies. Histopathologically, this hydronephrosis was caused by stenosis of the proximal ureter, which showed fibrosis and papillary malformations of the proliferative epithelium with infiltrations of B-cell-dominated lymphocytes. Additionally, CD16-positive large granular leukocytes and eosinophils infiltrated from the ureteral mucosa to the muscular layer. Eosinophilic crystals were characteristically observed in the lumen of the ureter and the cytoplasm of large granular leukocytes, eosinophils, and transitional epithelial cells. Comprehensive gene profiling revealed remarkably elevated expression of genes associated with hyperimmune responses through activation of B cells in diseased ureters. Furthermore, diseased ureters showed dramatically higher gene expression of chitinase 3-like 3, known as Ym1, which is associated with formation both of adenomas in the transitional epithelium and of eosinophilic crystals in inflammatory conditions. The Ym1 protein was mainly localized to the cytoplasm of the transitional epithelium, infiltrated cells, and eosinophilic crystals in diseased ureters.We determined that the primary cause of hydronephrosis in F2 mice was ureteritis mediated by the local hyperimmune response with malformation of the transitional epithelium. Our data provide a novel molecular pathogenesis for elucidating causes of aseptic inflammation in human upper urinary tracts.  相似文献   

15.
Atlantic salmon parr were injected intraperitoneally with salmon pancreas disease virus (SPDV) grown on CHSE-214 cells. The viraemia, the histopathological changes in target organs and some immune parameters were taken at intervals up to 30 days post-infection (dpi). The earliest kind of lesion was necrosis of exocrine pancreas, appearing as soon as 2 dpi. It progressed towards complete tissue breakdown at 9 dpi before resolving gradually. Concurrent to this necrosis, a strong inflammatory response was in evidence from 9 dpi in the pancreatic area for a majority of fish. A necrosis of the myocardial cells of the ventricle occurred in infected fish mainly at 16 dpi and it faded thereafter. The monitoring of the plasma viral load showed a rapid haematogenous spreading of SPDV, peaking at 4 dpi, but also the absence of a secondary viraemia. No interferon (IFN) was detected following the infection of parr with SPDV, probably owing to an IFN activity in Atlantic salmon below the detection level of the technique. Neutralising antibodies against SPDV were in evidence from 16 dpi and they showed a time-related increasing titre and prevalence. The phagocytic activity in head-kidney leucocytes was always significantly higher in the infected fish than in the control fish, being particularly high by 9 dpi. Lysozyme and complement levels were both increased and they peaked significantly in the infected fish at 9 and 16 dpi respectively. These results demonstrated that an experimental infection of Atlantic salmon parr with SPDV provoked a stimulation of both specific and non-specific immunity with regards to the viraemia and the histopathology.  相似文献   

16.
Proliferative gill inflammation (PGI) causes significant losses in farmed Atlantic salmon Salmo salar L. in Norway, especially during the first months following seawater transfer. The aetiology is apparently multifactorial, including infection with chlamydia-like bacteria and Atlantic salmon paramyxovirus (ASPV). In the present study, gills from diseased fish from 3 farms on the western coast of Norway were sampled. The pathological changes were briefly described and the aetiological significance of ASPV studied by immunofluorescent staining of cryosections and by immunohistochemistry on sections of formalin-fixed and paraffin-embedded tissue. The pathological changes were macroscopically characterized by palour of the gills, and histologically by inflammation, circulatory disturbances, cell death and epithelial cell proliferation. ASPV was demonstrated in fish from all farms studied, as immunostaining consistent with ASPV was obtained in lamellar epithelial and endothelial cells of pathologically altered tissues. It is concluded that ASPV is at least a contributing cause of PGI. As far as we know, this is the first demonstration of fish disease related to infection with a paramyxovirus.  相似文献   

17.
Recent genome-wide association studies of pediatric inflammatory bowel disease have implicated the 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11, with early-onset inflammatory bowel disease susceptibility. In the current study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that dextran sodium sulfate (DSS) treatment promotes the recruitment of F4/80(+)CD11b(+)CCR2(+)Ly6C(high) inflammatory monocytes into the colon. F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6C(high) intestinal inflammatory macrophages revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4, Cxcl2, Arg1, Chi3l3, Ccl11, and Il10, respectively. Attenuation of DSS-induced F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocyte recruitment to the colon in CCR2(-/-) mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation, and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6C(high)CCR2(+) inflammatory monocyte/macrophage-derived CCL11.  相似文献   

18.
Light and electron microscopical studies were carried out in order to characterise the blood cells of the bivalve mollusc, Scrobicularia plana. Three types of haemocytes were recognised: eosinophilic granular haemocytes, basophilic granular haemocytes and basophilic agranular haemocytes. The eosinophilic granulocytes were vesicular and contained large granules whereas the basophilic granulocytes were found to contain small granules and glycogen 'lakes'. The basophilic agranular haemocytes were significantly smaller than the granular haemocytes and had a high nucleus to cytoplasm ratio. Functional characterisation of the blood cells identified activity for the lysosomal enzymes: acid phosphatase, beta-glucuronidase, non-specific esterase and arylsulphatase. There was also a weak staining reaction for phenoloxidase and peroxidase activities. Phagocytosis of Gram-positive bacteria was demonstrated by the haemocytes and antibacterial activity was shown by cell-free haemolymph. Assays to determine release of reactive oxygen species from the haemocytes did not detect any reactive oxygen generation.  相似文献   

19.
Immune cell-mediated tissue injury is a common feature of different inflammatory diseases, yet the pathogenetic mechanisms and cell types involved vary significantly. Hypereosinophilic syndrome (HES) represents a group of inflammatory diseases that is characterized by increased numbers of pathogenic eosinophilic granulocytes in the peripheral blood and diverse organs. On the basis of clinical and laboratory findings, various forms of HES have been defined, yet the molecular mechanism and potential signaling pathways that drive eosinophil expansion remain largely unknown. In this study, we show that mice deficient of the serine/threonine-specific protein kinase NF-κB-inducing kinase (NIK) develop a HES-like disease, reflected by progressive blood and tissue eosinophilia, tissue injury, and premature death at around 25-30 wk of age. Similar to the lymphocytic form of HES, CD4(+) T cells from NIK-deficient mice express increased levels of Th2-associated cytokines, and eosinophilia and survival of NIK-deficient mice could be prevented completely by genetic ablation of CD4(+) T cells. Experiments based on bone marrow chimeric mice, however, demonstrated that inflammation in NIK-deficient mice depended on radiation-resistant tissues, implicating that NIK-deficient immune cells mediate inflammation in a nonautonomous manner. Surprisingly, disease development was independent of NIK's known function as an IκB kinase α (IKKα) kinase, because mice carrying a mutation in the activation loop of IKKα, which is phosphorylated by NIK, did not develop inflammatory disease. Our data show that NIK activity in nonhematopoietic cells controls Th2 cell development and prevents eosinophil-driven inflammatory disease, most likely using a signaling pathway that operates independent of the known NIK substrate IKKα.  相似文献   

20.
The cardiovascular effects of amoebic gill disease (AGD) were investigated immediately following surgery in three salmonid species; Atlantic salmon (Salmo salar L.), brown trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walbaum). Fish, both naïve (control) and infected (AGD-affected) of each species, were fitted with dorsal aorta catheters and cardiac flow probes. Cardiac output and dorsal aortic pressures were then continuously measured over a 6-h period following surgery. Results showed that Atlantic salmon, brown trout and rainbow trout displayed similar dorsal aortic pressure, cardiac output, and systemic vascular resistance (mean dorsal aotic pressure divided by cardiac output) values. However, the only significant differences relating to disease status i.e. infected or control, were found in Atlantic salmon. Although no significant differences were seen in dorsal aortic pressure values, AGD-affected salmon displayed significantly elevated systemic vascular resistance at 4 and 6 h post surgery. Cardiac output was also approximately 35% lower in AGD-affected salmon compared to the non-affected control counterparts. These results comparatively examine cardiac function in response to AGD across three salmonid species and highlight species-specific cardiovascular responses that occur in association with disease. It is suggested that the apparent cardiac dysfunction seen in AGD-affected Atlantic salmon could, under stressful conditions, become exacerbated. Cardiac failure is therefore suggested to be a possible physiological mechanism by which AGD causes or contributes to mortality in Atlantic salmon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号