首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fundamental step in synthetic biology and systems biology is to derive appropriate mathematical models for the purposes of analysis and design. For example, to synthesize a gene regulatory network, the derivation of a mathematical model is important in order to carry out in silico investigations of the network dynamics and to investigate parameter variations and robustness issues. Different mathematical frameworks have been proposed to derive such models. In particular, the use of sets of nonlinear ordinary differential equations (ODEs) has been proposed to model the dynamics of the concentrations of mRNAs and proteins. These models are usually characterized by the presence of highly nonlinear Hill function terms. A typical simplification is to reduce the number of equations by means of a quasi-steady-state assumption on the mRNA concentrations. This yields a class of simplified ODE models. A radically different approach is to replace the Hill functions by piecewise-linear approximations [Casey, R., de Jong, H., Gouz, J.-L., 2006. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J. Math. Biol. 52 (1), 27-56]. A further modelling approach is the use of discrete-time maps [Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A., 2006. Discrete time piecewise affine models of genetic regulatory networks. J. Math. Biol. 52, 524-570] where the evolution of the system is modelled in discrete, rather than continuous, time. The aim of this paper is to discuss and compare these different modelling approaches, using a representative gene regulatory network. We will show that different models often lead to conflicting conclusions concerning the existence and stability of equilibria and stable oscillatory behaviours. Moreover, we shall discuss, where possible, the viability of making certain modelling approximations (e.g. quasi-steady-state mRNA dynamics or piecewise-linear approximations of Hill functions) and their effects on the overall system dynamics.  相似文献   

2.
Most models of Fisherian sexual selection assume haploidy. However, analytical models that focus on dynamics near fixation boundaries and simulations show that the resulting behavior depends on ploidy. Here we model sexual selection in a diploid to characterize behaviour away from fixation boundaries. The model assumes two di-allelic loci, a male-limited trait locus subject to viability selection, and a preference locus that determines a female's tendency to mate with males based on their genotype at the trait locus. Using a quasi-linkage equilibrium (QLE) approach, we find a general equation for the curves of quasi-neutral equilibria, and the conditions under which they are attracting or repelling. Unlike in the haploid model, the system can move away from the internal curve of equilibria in the diploid model. We show that this is the case when the combined forces of natural and sexual selection induce underdominance at the trait locus.  相似文献   

3.
Deterministic Boolean networks have been used as models of gene regulation and other biological networks. One key element in these models is the update schedule, which indicates the order in which states are to be updated. We study the robustness of the dynamical behavior of a Boolean network with respect to different update schedules (synchronous, block-sequential, sequential), which can provide modelers with a better understanding of the consequences of changes in this aspect of the model. For a given Boolean network, we define equivalence classes of update schedules with the same dynamical behavior, introducing a labeled graph which helps to understand the dependence of the dynamics with respect to the update, and to identify interactions whose timing may be crucial for the presence of a particular attractor of the system. Several other results on the robustness of update schedules and of dynamical cycles with respect to update schedules are presented. Finally, we prove that our equivalence classes generalize those found in sequential dynamical systems.  相似文献   

4.
5.
Noise-induced cooperative behavior in a multicell system   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
Mathematical modeling often helps to provide a systems perspective on gene regulatory networks. In particular, qualitative approaches are useful when detailed kinetic information is lacking. Multiple methods have been developed that implement qualitative information in different ways, e.g., in purely discrete or hybrid discrete/continuous models. In this paper, we compare the discrete asynchronous logical modeling formalism for gene regulatory networks due to R. Thomas with piecewise affine differential equation models. We provide a local characterization of the qualitative dynamics of a piecewise affine differential equation model using the discrete dynamics of a corresponding Thomas model. Based on this result, we investigate the consistency of higher-level dynamical properties such as attractor characteristics and reachability. We show that although the two approaches are based on equivalent information, the resulting qualitative dynamics are different. In particular, the dynamics of the piecewise affine differential equation model is not a simple refinement of the dynamics of the Thomas model  相似文献   

8.
9.
We compare the stability properties of haploid and diploid models of Fisherian sexual selection (with male contribution limited to sperm) by examining both models at equilibria for which a male trait is fixed or absent. Haploid and diploid two locus diallelic models share the property that the stability of such fixation equilibria is determined by the relationship between the harmonic mean of relative preference values for the common male trait, weighted by the frequency of the preferences, and the relative viability associated with the common male trait. When diploid females with heterozygotic-based preferences express preference strengths intermediate between homozygote-based preferences, then boundary equilibria of haploid and diploid models share many stability properties. However, even with intermediate heterozygote preferences, haploid and diploid models do differ: (1) for a particular frequency of the preference allele, both fixation boundaries can be stable for the diploid model, and (2) with over- or underdominance at the preference locus (a possibility precluded in the haploid model), a fixation boundary in the diploid model may show two switches in its stability state for increasing frequencies of one of the preference alleles. These differences are due not just to the impossibility of dominance in haploid models, but also to the larger number of diploid genotypes.  相似文献   

10.
11.
Multisite phosphorylation of regulatory proteins has been proposed to underlie ultrasensitive responses required to generate nontrivial dynamics in complex biological signaling networks. We used a random search strategy to analyze the role of multisite phosphorylation of key proteins regulating cyclin-dependent kinase (CDK) activity in a model of the eukaryotic cell cycle. We show that multisite phosphorylation of either CDK, CDC25, wee1, or CDK-activating kinase is sufficient to generate dynamical behaviors including bistability and limit cycles. Moreover, combining multiple feedback loops based on multisite phosphorylation do not destabilize the cell cycle network by inducing complex behavior, but rather increase the overall robustness of the network. In this model we find that bistability is the major dynamical behavior of the CDK signaling network, and that negative feedback converts bistability into limit cycle behavior. We also compare the dynamical behavior of several simplified models of CDK regulation to the fully detailed model. In summary, our findings suggest that multisite phosphorylation of proteins is a critical biological mechanism in generating the essential dynamics and ensuring robust behavior of the cell cycle.  相似文献   

12.
Robustness to perturbation is an important characteristic of genetic regulatory systems, but the relationship between robustness and model dynamics has not been clearly quantified. We propose a method for quantifying both robustness and dynamics in terms of state-space structures, for Boolean models of genetic regulatory systems. By investigating existing models of the Drosophila melanogaster segment polarity network and the Saccharomyces cerevisiae cell-cycle network, we show that the structure of attractor basins can yield insight into the underlying decision making required of the system, and also the way in which the system maximises its robustness. In particular, gene networks implementing decisions based on a few genes have simple state-space structures, and their attractors are robust by virtue of their simplicity. Gene networks with decisions that involve many interacting genes have correspondingly more complicated state-space structures, and robustness cannot be achieved through the structure of the attractor basins, but is achieved by larger attractor basins that dominate the state space. These different types of robustness are demonstrated by the two models: the D. melanogaster segment polarity network is robust due to simple attractor basins that implement decisions based on spatial signals; the S. cerevisiae cell-cycle network has a complicated state-space structure, and is robust only due to a giant attractor basin that dominates the state space.  相似文献   

13.
Traditional explorations of infectious disease evolution have considered the competition between two cross-reactive strains within the standard framework of disease models. Such techniques predict that diseases should evolve to be highly transmissible, benign to the host and possess a long infectious period: in general, diseases do not conform to this ideal. Here we consider a more holistic approach, suggesting that evolution is a trade-off between adaptive pressures at different scales: within host, between hosts and at the population level. We present a model combining within-host pathogen dynamics and transmission between individuals governed by an explicit contact network, where transmission dynamics between hosts are a function of the interaction between the pathogen and the hosts' immune system, though ultimately constrained by the contacts each infected host possesses. Our results show how each of the scales places constraints on the evolutionary behavior, and that complex dynamics may emerge due to the feedbacks between epidemiological and evolutionary dynamics. In particular, multiple stable states can occur with switching between them stochastically driven.  相似文献   

14.
In this paper, we develop a new methodology to analyze and design periodic oscillators of biological networks, in particular gene regulatory networks with multiple genes, proteins and time delays, by using negative cyclic feedback systems. We show that negative cyclic feedback networks have no stable equilibria but stable periodic orbits when certain conditions are satisfied. Specifically, we first prove the basic properties of the biological networks composed of cyclic feedback loops, and then extend our results to general cyclic feedback network with less restriction, thereby making our theoretical analysis and design of oscillators easy to implement, even for large-scale systems. Finally, we use one circadian network formed by a period protein (PER) and per mRNA, and one biologically plausible synthetic gene network, to demonstrate the theoretical results. Since there is less restriction on the network structure, the results of this paper can be expected to apply to a wide variety of areas on modelling, analyzing and designing of biological systems.  相似文献   

15.
16.
Immune networks modeled by replicator equations   总被引:2,自引:0,他引:2  
In order to evaluate the role of idiotypic networks in the operation of the immune system a number of mathematical models have been formulated. Here we examine a class of B-cell models in which cell proliferation is governed by a non-negative, unimodal, symmetric response function f(h), where the field h summarizes the effect of the network on a single clone. We show that by transforming into relative concentrations, the B-cell network equations can be brought into a form that closely resembles the replicator equation. We then show that when the total number of clones in a network is conserved, the dynamics of the network can be represented by the dynamics of a replicator equation. The number of equilibria and their stability are then characterized using methods developed for the study of second-order replicator equations. Analogies with standard Lotka-Volterra equations are also indicated. A particularly interesting result of our analysis is the fact that even though the immune network equations are not second-order, the number and stability of their equilibria can be obtained by a superposition of second-order replicator systems. As a consequence, the problem of finding all of the equilibrium points of the nonlinear network equations can be reduced to solving linear equations.  相似文献   

17.
The analysis of ecological models often focuses on their asymptotic behavior, but there is increasing recognition that it is important to understand the role of transient behavior. By introducing a time delay into a model of coral-algal interactions in Caribbean coral reefs that exhibits alternative stable states (a favorable coral rich state and a degraded coral-depleted state), we demonstrate the criticality of understanding the basins of attraction for stable equilibria in addition to the systems' asymptotic behavior. Specifically, we show that although the introduction of a time delay into the model does not change the asymptotic stability of the stable equilibria, there are significant changes to their basins of attraction. An understanding of these effects is necessary when determining appropriate reef management options. We then demonstrate that this is a general phenomenon by considering similar behavior underlying the changes in the basins of attraction in a simple Lotka-Volterra model of competition.  相似文献   

18.
19.
This paper describes the analysis of the well known neural network model by Wilson and Cowan. The neural network is modeled by a system of two ordinary differential equations that describe the evolution of average activities of excitatory and inhibitory populations of neurons. We analyze the dependence of the model's behavior on two parameters. The parameter plane is partitioned into regions of equivalent behavior bounded by bifurcation curves, and the representative phase diagram is constructed for each region. This allows us to describe qualitatively the behavior of the model in each region and to predict changes in the model dynamics as parameters are varied. In particular, we show that for some parameter values the system can exhibit long-period oscillations. A new type of dynamical behavior is also found when the system settles down either to a stationary state or to a limit cycle depending on the initial point.  相似文献   

20.
Gene perturbation and intervention in probabilistic Boolean networks   总被引:3,自引:0,他引:3  
MOTIVATION: A major objective of gene regulatory network modeling, in addition to gaining a deeper understanding of genetic regulation and control, is the development of computational tools for the identification and discovery of potential targets for therapeutic intervention in diseases such as cancer. We consider the general question of the potential effect of individual genes on the global dynamical network behavior, both from the view of random gene perturbation as well as intervention in order to elicit desired network behavior. RESULTS: Using a recently introduced class of models, called Probabilistic Boolean Networks (PBNs), this paper develops a model for random gene perturbations and derives an explicit formula for the transition probabilities in the new PBN model. This result provides a building block for performing simulations and deriving other results concerning network dynamics. An example is provided to show how the gene perturbation model can be used to compute long-term influences of genes on other genes. Following this, the problem of intervention is addressed via the development of several computational tools based on first-passage times in Markov chains. The consequence is a methodology for finding the best gene with which to intervene in order to most likely achieve desirable network behavior. The ideas are illustrated with several examples in which the goal is to induce the network to transition into a desired state, or set of states. The corresponding issue of avoiding undesirable states is also addressed. Finally, the paper turns to the important problem of assessing the effect of gene perturbations on long-run network behavior. A bound on the steady-state probabilities is derived in terms of the perturbation probability. The result demonstrates that states of the network that are more 'easily reachable' from other states are more stable in the presence of gene perturbations. Consequently, these are hypothesized to correspond to cellular functional states. AVAILABILITY: A library of functions written in MATLAB for simulating PBNs, constructing state-transition matrices, computing steady-state distributions, computing influences, modeling random gene perturbations, and finding optimal intervention targets, as described in this paper, is available on request from is@ieee.org.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号