首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive studies have focused on the development and regionalization of neurons in the central nervous system(CNS). Many genes, which play crucial roles in the development of CNS neurons, have been identified. By using the technique "direct reprogramming", neurons can be produced from multiple cell sources such as fibroblasts. However, understanding the region-specific regulation of neurons in the CNS is still one of the biggest challenges in the research field of neuroscience. Neurons located in the trigeminal subnucleus caudalis(Vc) and in the spinal dorsal horn(SDH) play crucial roles in pain and sensorimotor functions in the orofacial and other somatic body regions, respectively. Anatomically, Vc represents the most caudal component of the trigeminal system, and is contiguous with SDH. This review is focused on recent data dealing with the regional specificity involved in the development of neurons in Vc and SDH.  相似文献   

2.
Xu P  Hall AK 《Developmental biology》2006,299(2):303-309
Signals from target tissues play critical roles in the functional differentiation of neuronal cells, and in their subsequent adaptations to peripheral changes in the adult. Sensory neurons in the dorsal root ganglia (DRG) provide an excellent model system for the study of signals that regulate the development of neuronal diversity. DRG have been well characterized and contain both neurons that convey information from muscles about limb position, as well as other neurons that provide sensations from skin about pain information. Sensory neurons involved in pain sensation can be distinguished physiologically and antigenically, and one hallmark characteristic is that these neurons contain neuropeptides important for their functions. The transforming growth factor (TGF) beta family member activin A has recently been implicated in neural development and response to injury. During sensory neuron development, peripheral target tissues containing activin or activin itself can regulate pain neuropeptide expression. Long after development has ceased, skin target tissues retain the capacity to signal neurons about changes or injury, to functionally refine synapses. This review focuses on the role of activin as a target-derived differentiative factor in neural development that has additional roles in response to cutaneous injuries in the adult.  相似文献   

3.
4.
Retrograde signaling from target tissues has been shown to influence many aspects of neuronal development in a number of developmental systems. In these experiments using embryonic leeches (Hirudo medicinalis), we examined how depriving a neuron of contact with its peripheral target affects the development of the cell's central arborization. We focused our attention on the motor neuron cell 3, which normally stimulates dorsal longitudinal muscle fibers to contract. At different locations in the periphery and in embryos of several different stages, we cut the nerve containing the growing axon of cell 3. This surgery led to dramatic overgrowth of cell 3's central dendritic branches, which normally accept synaptic contacts from other neurons, including the inhibitory motor neuron cell 1. When cell 3's peripheral axon was cut relatively early in development, its overgrown central branches eventually retracted. However, cells that were disrupted later in development retained their overextended branches into adulthood. In addition, if the axon was cut close to the ganglion early in development, depriving the cell of contact with any dorsal tissues, the central branches failed to retract and were instead retained into adulthood. Unlike cell 3, the central branches of cell 1, which has the same peripheral target muscles as cell 3, remained unchanged following all axotomy protocols. These results suggest that in at least some neurons contact with peripheral targets can influence development of the central processes that normally mediate synaptic contacts.  相似文献   

5.
We used polyclonal antisera recognizing S100, a small acidic protein highly enriched in nervous tissue, to stain sections of embryonic chicken lumbosacral spinal cord and hindlimb. S100 immunoreactivity was detected in developing sensory neurons of the dorsal root ganglia (DRG) and motor neurons of the ventral spinal cord as early as embryonic day (E) 5, and staining persisted through hatching. In contrast, expression of S100 first became apparent in Schwann cells at E13, just before myelination, and was not detected in developing skin or muscle. Since S100β was present in motor and sensory neurons and is known to promote neuronal survival and neurite extension in vitro (Winningham-Major, Staecker, Barger, Coats, and Van Eldik, 1989), we tested the ability of S100 to promote neuron survival in an in ovo survival assay. Addition of S100 to chick embryos in ovo during the period of naturally occurring motor neuron cell death resulted in a significant increase in motor neuron survival, but had no effect on the in vivo survival of sensory neurons in the DRG. The findings that S100 is present in spinal motor neurons and that the addition of S100 enhances the survival of these cells in vivo are consistent with the possibility that S100 may act as a naturally occurring neuron survival factor during development. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
Thrombospondin (TSP) is a prominent constituent of the extracellular matrix of the developing nervous system. We have examined the effects of TSP on the morphological differentiation of neurons. In short-term cultures (less than or equal to 24 hr) of embryonic rat sympathetic neurons, TSP stimulated neurite outgrowth, causing significant increase in the number of processes and their length. Similar effects were observed in cultures of rat dorsal root ganglion, hippocampal, and cerebral cortical neurons. Moreover, in cultures of central neurons, TSP was more effective than laminin in enhancing process extension. Analysis of long-term (5-7 days) cultures of sympathetic neurons indicated that processes formed in the presence of TSP had the cytochemical characteristics of axons. Thus, TSP can influence neuronal development by selectively enhancing axonal growth. The neurite-promoting region of the molecule was identified using a panel of monoclonal antibodies targeted to different regions of the protein. Process outgrowth could be totally inhibited with antibody A4.1, which recognizes the stalk region of TSP. These data suggest that the neurite-promoting activity is localized to a single region of the TSP molecule.  相似文献   

7.
8.
9.
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic polypeptide, distantly related to transforming growth factor-beta (TGF- beta), originally isolated by virtue of its ability to induce dopamine uptake and cell survival in cultures of embryonic ventral midbrain dopaminergic neurons, and more recently shown to be a potent neurotrophic factor for motorneurons. The biological activities and distribution of this molecule outside the central nervous system are presently unknown. We report here on the mRNA expression, biological activities and initial receptor binding characterization of GDNF and a shorter spliced variant termed GDNF beta in different organs and peripheral neurons of the developing rat. Both GDNF mRNA forms were found to be most highly expressed in developing skin, whisker pad, kidney, stomach and testis. Lower expression was also detected in developing skeletal muscle, ovary, lung, and adrenal gland. Developing spinal cord, superior cervical ganglion (SCG) and dorsal root ganglion (DRG) also expressed low levels of GDNF mRNA. Two days after nerve transection, GDNF mRNA levels increased dramatically in the sciatic nerve. Overall, GDNF mRNA expression was significantly higher in peripheral organs than in neuronal tissues. Expression of either GDNF mRNA isoform in insect cells resulted in the production of indistinguishable mature GDNF polypeptides. Purified recombinant GDNF promoted neurite outgrowth and survival of embryonic chick sympathetic neurons. GDNF produced robust bundle-like, fasciculated outgrowth from chick sympathetic ganglion explants. Although GDNF displayed only low activity on survival of newborn rat SCG neurons, this protein was found to increase the expression of vasoactive intestinal peptide and preprotachykinin-A mRNAs in cultured SCG neurons. GDNF also promoted survival of about half of the neurons in embryonic chick nodose ganglion and a small subpopulation of embryonic sensory neurons in chick dorsal root and rat trigeminal ganglia. Embryonic chick sympathetic neurons expressed receptors for GDNF with Kd 1-5 x 10(-9) M, as measured by saturation and displacement binding assays. Our findings indicate GDNF is a new neurotrophic factor for developing peripheral neurons and suggest possible non-neuronal roles for GDNF in the developing reproductive system.  相似文献   

10.
美洲大蠊中枢DUM神经元的分离和电压门控Na+电流的记录   总被引:1,自引:0,他引:1  
许鹏  孙芹  陈超  程洁  高蓉  姜志宽  肖杭 《昆虫学报》2009,52(4):380-385
【目的】建立美洲大蠊Periplaneta americana中枢神经系统背侧不成对中间神经元(dorsal unpaired median neurons, DUM neurons)的分离方法和DUM神经元电生理实验模型。【方法】IA型胶原酶法消化美洲大蠊末端腹神经节, 机械吹打得到DUM神经元细胞, 运用膜片钳技术记录DUM神经元细胞电压门控Na+电流。【结果】分离得到的DUM神经元细胞状态良好, 具有DUN神经元典型的梨状形态和表面特征。以膜片钳全细胞方式记录到的Na+电流符合钠通道电流特征。【结论】IA型胶原酶消化得到美洲大蠊DUM神经元细胞的方法可靠, 能稳定地记录到Na+电流。本文描述的方法为昆虫神经细胞的电生理机制研究提供一个可用的实验模型。  相似文献   

11.
Summary The 75-kDa low-affinity neurotrophin receptor (p75NTR) has been shown in previous reports to mediate neuronal cell death in vitro and in vivo under certain circumstances. Antisense oligonucleotides directed against p75NTR promote the survival of nerve growth factor-deprived dorsal root ganglia sensory neurons in vitro (Barrett, G.; Bartlett, P., Proc. Natl. Acad. Sci. USA 91:6501–6505; 1994) and axotomized dorsal root ganglia sensory neurons in vivo (Cheema, S. S.; Barrett, G. L.; Bartlett, P. F., J. Neurosci. Res. 46:239–245; 1996). In this study we compared the neuroprotective effects of antisense p75NTR oligonucleotides with two neurotrophic factors, namely nerve growth factor (NGF) and leukemia inhibitory factor, on cultured sensory neurons derived from postnatal day 7 and 14 rat dorsal root ganglia. After 3 d in culture, treatment with the neurotrophic factors had significant survival effects on sensory neuron cultures compared to treatment with basal medium (control). However, after 6 and 9 d in culture these rescue effects were not apparent. In contrast, antisense p75NTR oligonucleotides rescued significantly higher numbers of dorsal root ganglia sensory neurons after 6 and 9 d in culture than treatment with neurotrophic factors, sense oligonucleotides, and basal medium. Furthermore, antisense p75NTR oligonucleotides rescued trkA-, B-, and C-expressing neurons, while NGF and leukemia inhibitory factor targeted primarily the trkA-positive neurons. These findings suggest that antisense-based strategies that inhibit gene expression of cytotoxic molecules are more efficient at preventing postnatal sensory neuronal death in vitro than treatment with individual neurotrophic factors.  相似文献   

12.
《The Journal of cell biology》1994,127(6):1703-1715
Phosphacan is a chondroitin sulfate proteoglycan produced by glial cells in the central nervous system, and represents the extracellular domain of a receptor-type protein tyrosine phosphatase (RPTP zeta/beta). We previously demonstrated that soluble phosphacan inhibited the aggregation of microbeads coated with N-CAM or Ng-CAM, and have now found that soluble 125I-phosphacan bound reversibly to these neural cell adhesion molecules, but not to a number of other cell surface and extracellular matrix proteins. The binding was saturable, and Scatchard plots indicated a single high affinity binding site with a Kd of approximately 0.1 nM. Binding was reduced by approximately 15% after chondroitinase treatment, and free chondroitin sulfate was only moderately inhibitory, indicating that the phosphacan core glycoprotein accounts for most of the binding activity. Immunocytochemical studies of embryonic rat spinal phosphacan, Ng-CAM, and N-CAM have overlapping distributions. When dissociated neurons were incubated on dishes coated with combinations of phosphacan and Ng-CAM, neuronal adhesion and neurite growth were inhibited. 125I-phosphacan bound to neurons, and the binding was inhibited by antibodies against Ng-CAM and N-CAM, suggesting that these CAMs are major receptors for phosphacan on neurons. C6 glioma cells, which express phosphacan, adhered to dishes coated with Ng-CAM, and low concentrations of phosphacan inhibited adhesion to Ng-CAM but not to laminin and fibronectin. Our studies suggest that by binding to neural cell adhesion molecules, and possibly also by competing for ligands of the transmembrane phosphatase, phosphacan may play a major role in modulating neuronal and glial adhesion, neurite growth, and signal transduction during the development of the central nervous system.  相似文献   

13.
14.
15.
SUMMARY 1. The plasticity of sensory neurons following the injury to their axons is very important for prognosis of recovery of afferent fibers with different modality. It is evident that the response of dorsal root ganglion (DRG) neurons after peripheral axotomy is different depending on the deficiency in neurotrophic factors from peripheral region. The loss of cells appears earlier and is more severe in B-cells (small, dark cells with unmyelinated axons) than in A-cells (large, light cells with myelinated axons).2. We studied using immunohistochemical methods the response of DRG neurons to dorsal rhizotomy and combined injury of central and peripheral neuronal processes. A quantitative analysis of DRG neurons tagged by the selective markers isolectin B4 (IB4) and the heavy molecular component of the neurofilament triplet (NF200) antibody, selective for subpopulations of small and large/medium DRG neurons, respectively, was performed after dorsal rhizotomy, peripheral axotomy, and their combination.3. The number of NF200+-neurons is reduced substantially after both dorsal rhizotomy and peripheral axotomy, while the decrease of IB4+-neurons is observed only in combined injury, i.e., dorsal rhizotomy accompanied with sciatic nerve injury.4. Our results show that distinct subpopulations of DRG neurons respond differently to the injury of their central processes. The number of NF200+-neurons decreases to greater degree following dorsal rhizotomy in comparison to IB4+-neurons.  相似文献   

16.
Maas MR  Norgren RB 《Tissue & cell》2000,32(3):216-222
The olfactory placode gives rise to both olfactory receptor neurons, which remain as a component of the peripheral nervous system, and to luteinizing hormone-releasing hormone (LHRH) neurons, which migrate to the central nervous system. In this study, we used chick olfactory placode explants to ask several questions regarding LHRH neuronal differentiation. We found that explants of ectoderm from the fronto-nasal region of embryos as early as Hamilton & Hamburger (HH) stage 12 gave rise to LHRH neurons, that explants from all regions of the olfactory placode were able to generate LHRH neurons, that both brain conditioned medium and disruption of the olfactory placode increase the number of LHRH neurons observed in explants, and that the combination of these two manipulations results in the production of more LHRH neurons than either treatment alone. We conclude that LHRH neurons originate in the olfactory epithelium and that some of the same factors which influence olfactory receptor neuron development also affect LHRH neuronal development.  相似文献   

17.
Protein kinase C gamma (PKCγ) interneurons, located in the superficial spinal (SDH) and medullary dorsal horns (MDH), have been shown to play a critical role in cutaneous mechanical hypersensitivity. However, a thorough characterization of their development in the MDH is lacking. Here, it is shown that the number of PKCγ‐ir interneurons changes from postnatal day 3 (P3) to P60 (adult) and such developmental changes differ according to laminae. PKCγ‐ir interneurons are already present at P3‐5 in laminae I, IIo, and III. In lamina III, they then decrease from P11–P15 to P60. Interestingly, PKCγ‐ir interneurons appear only at P6 in lamina IIi, and they conversely increase to reach adult levels at P11–15. Analysis of neurogenesis using bromodeoxyuridine (BrdU) does not detect any PKCγ‐BrdU double‐labeling in lamina IIi. Quantification of the neuronal marker, NeuN, reveals a sharp neuronal decline (∼50%) within all superficial MDH laminae during early development (P3–15), suggesting that developmental changes in PKCγ‐ir interneurons are independent from those of other neurons. Finally, neonatal capsaicin treatment, which produces a permanent loss of most unmyelinated afferent fibers, has no effect on the development of PKCγ‐ir interneurons. Together, the results show that: (i) the expression of PKCγ‐ir interneurons in MDH is developmentally regulated with a critical period at P11‐P15, (ii) PKCγ‐ir interneurons are developmentally heterogeneous, (iii) lamina IIi PKCγ‐ir interneurons appear less vulnerable to cell death, and (iv) postnatal maturation of PKCγ‐ir interneurons is due to neither neurogenesis, nor neuronal migration, and is independent of C‐fiber development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 102–119, 2017  相似文献   

18.
Nr-CAM is a neuronal cell adhesion molecule (CAM) belonging to the immunoglobulin superfamily that has been implicated as a ligand for another CAM, axonin-1, in guidance of commissural axons across the floor plate in the spinal cord. Nr-CAM also serves as a neuronal receptor for several other cell surface molecules, but its role as a ligand in neurite outgrowth is poorly understood. We studied this problem using a chimeric Fc-fusion protein of the extracellular region of Nr-CAM (Nr-Fc) and investigated potential neuronal receptors in the developing peripheral nervous system. A recombinant Nr-CAM-Fc fusion protein, containing all six Ig domains and the first two fibronectin type III repeats of the extracellular region of Nr-CAM, retains cellular and molecular binding activities of the native protein. Injection of Nr-Fc into the central canal of the developing chick spinal cord in ovo resulted in guidance errors for commissural axons in the vicinity of the floor plate. This effect is similar to that resulting from treatment with antibodies against axonin-1, confirming that axonin-1/Nr-CAM interactions are important for guidance of commissural axons through a spatially and temporally restricted Nr-CAM positive domain in the ventral spinal cord. When tested as a substrate, Nr-Fc induced robust neurite outgrowth from dorsal root ganglion and sympathetic ganglion neurons, but it was not effective for tectal and forebrain neurons. The peripheral but not the central neurons expressed high levels of axonin-1 both in vitro and in vivo. Moreover, antibodies against axonin-1 inhibited Nr-Fc-induced neurite outgrowth, indicating that axonin-1 is a neuronal receptor for Nr-CAM on these peripheral ganglion neurons. The results demonstrate a role for Nr-CAM as a ligand in axon growth by a mechanism involving axonin-1 as a neuronal receptor and suggest that dynamic changes in Nr-CAM expression can modulate axonal growth and guidance during development.  相似文献   

19.
VEGF in the nervous system   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor (VEGF, VEGFA) is critical for blood vessel growth in the developing and adult nervous system of vertebrates. Several recent studies demonstrate that VEGF also promotes neurogenesis, neuronal patterning, neuroprotection and glial growth. For example, VEGF treatment of cultured neurons enhances survival and neurite growth independently of blood vessels. Moreover, evidence is emerging that VEGF guides neuronal migration in the embryonic brain and supports axonal and arterial co-patterning in the developing skin. Even though further work is needed to understand the various roles of VEGF in the nervous system and to distinguish direct neuronal effects from indirect, vessel-mediated effects, VEGF can be considered a promising tool to promote neuronal health and nerve repair.Key words: VEGF, neuron, neurogenesis, glia, endothelial cell, blood vessel, angiogenic niche  相似文献   

20.
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号