首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus thuringiensis subsp. israelensis is a bioinsecticide used for larval mosquito control and it represents a safe alternative to chemical insecticides. Despite its environmental safety, it is less efficient and persistent than chemical insecticides. To bypass these limitations, we propose to combine the advantages of chemical and biological insecticides by producing Bti in a medium supplemented with a chemical insecticide (DDT, deltamethrin, permethrin, propoxur or temephos). Among the investigated insecticides, the addition of deltamethrin in the medium induced a higher toxicity (over 6·72‐fold) of the composite deltamethrin‐Bti towards mosquito larvae as compared to Bti alone. This was mainly due to the insertion of deltamethrin into the membranes of Bti spores, as evidenced by a quantification of membrane‐extracted deltamethrin by HPLC. This composite larvicide is a promising tool to decrease the quantity of chemicals dispersed in the environment, to increase the efficacy of Bti and to facilitate its widespread use as a transition between chemical and biological insecticides. Further experiments are required to characterize the mechanisms that underline the incorporation of deltamethrin into Bti to optimize the production and the toxicity of this composite larvicide.

Significance and Impact of the Study

This study is the first report of an increased efficacy of the mosquitocidal bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) when produced with a chemical insecticide. The results clearly demonstrate that deltamethrin is able to synergize the insecticidal activity of Bti through inclusion into spore membranes, reducing off‐target and nonspecific toxicity occurring when the chemical is used alone as sprays. This new composite chemical–biological insecticide can become an invaluable tool as an intermediate between single chemical usage and the widespread use of Bti, notably in developing countries with limited financial resources for intensive mosquito control campaigns.  相似文献   

2.
Immunofluorescent staining was used with thin sections of paraffin-embedded specimens to detect the development of Bacillus thuringiensis var. israelensis and Bacillus sphaericus in the gut of mosquito larvae. The third- and fourth-instar larvae of Aedes aegypti, Anopheles maculatus, and Culex quinquefasciatus were fed either vegetative cells or spores of the bacteria. Spore germination, multiplication, and sporulation were studied in the larvae of each species. The spores of B. thuringiensis var. israelensis and B. sphaericus strain 2297 could germinate and cells could sporulate in the larval body. The vegetative cells of B. sphaericus strain 810428 were also able to produce spores in the mosquito larval gut, but the germination of spores could not be detected in the larvae. Multiplication of all bacterial species was observed after the larvae died. Growth of the bacteria in distilled water containing crude extracts of larvae made from each species was compared with that in synthetic medium (nutrient broth). They could produce spores and toxins in all the media used and the toxins had larvicidal activity against the target mosquitos Ae. aegypti, An. maculatus, and C. quinquefasciatus.  相似文献   

3.
The crystal delta-endotoxin of Bacillus thuringiensis subsp. israelensis is less toxic to larvae of Anopheles freeborni than to larvae of Aedes aegypti. However, when solubilized crystal was used, larvae from both species showed similar sensitivities. This effect presumably was due to the differences in feeding behavior between the two mosquito larvae when crystal preparations are used. A procedure is described whereby both crystal and solubilized B. thuringiensis subsp. israelensis toxin were emulsified with Freund incomplete adjuvant, with retention of toxicity. The use of Freund incomplete adjuvant also allowed one to assay the solubilized toxin at a low nanogram level. Furthermore, coating the toxin with lipophilic material altered the buoyancy of the toxin and reversed the sensitivities of the two mosquito larvae toward the B. thuringiensis subsp. israelensis toxin. This difference in buoyancy was determined by using an enzyme-linked immunosorbent assay that was specific for the toxic peptides. These data indicate that economically feasible buoyant formulations for the B. thuringiensis subsp. israelensis crystal can be developed.  相似文献   

4.
The crystal delta-endotoxin of Bacillus thuringiensis subsp. israelensis is less toxic to larvae of Anopheles freeborni than to larvae of Aedes aegypti. However, when solubilized crystal was used, larvae from both species showed similar sensitivities. This effect presumably was due to the differences in feeding behavior between the two mosquito larvae when crystal preparations are used. A procedure is described whereby both crystal and solubilized B. thuringiensis subsp. israelensis toxin were emulsified with Freund incomplete adjuvant, with retention of toxicity. The use of Freund incomplete adjuvant also allowed one to assay the solubilized toxin at a low nanogram level. Furthermore, coating the toxin with lipophilic material altered the buoyancy of the toxin and reversed the sensitivities of the two mosquito larvae toward the B. thuringiensis subsp. israelensis toxin. This difference in buoyancy was determined by using an enzyme-linked immunosorbent assay that was specific for the toxic peptides. These data indicate that economically feasible buoyant formulations for the B. thuringiensis subsp. israelensis crystal can be developed.  相似文献   

5.
The solubilized entomotoxin of Bacillus thuringiensis subsp. israelensis killed adult male and female mosquitoes of several genera and of various physiological states when it was administered orally. Adult mosquito mortality was further influenced when the preparation was contained in sucrose solution. The potential implication for the control of adult mosquitoes is discussed.  相似文献   

6.
The solubilized entomotoxin of Bacillus thuringiensis subsp. israelensis killed adult male and female mosquitoes of several genera and of various physiological states when it was administered orally. Adult mosquito mortality was further influenced when the preparation was contained in sucrose solution. The potential implication for the control of adult mosquitoes is discussed.  相似文献   

7.
Solubilized crystal protein of Bacillus thuringiensis subsp. israelensis was fractionated by affinity chromatography using a monoclonal antibody directed against the crystal's 28 kDa peptide. The 28 kDa peptide was found to be relatively nontoxic to mosquito larvae although it does contain the hemolytic activity of the crystals. The crystal protein fraction depleted of the 28 kDa peptide was found to be nonhemolytic and to retain nearly full toxicity to mosquito larvae. These results suggest that the 28 kDa peptide is not required for the toxicity of solubilized crystal protein.  相似文献   

8.
Crystal serine-proteases of B. thuringiensis subsp. israelensis were able to process the 28,000-dalton protein during crystal solubilization. On the other hand, solubilized crystal proteins were degraded during the larvicidal bioassay by the action of serine-proteases liberated by mosquito larvae into the medium, with loss of toxicity. However, proteins in intact crystals were protected from the action of these proteases. This resistance to degradation of crystals partly explains the observation that they are more toxic than solubilized crystal proteins.  相似文献   

9.
A bioassay system employing acutely toxic concentrations of a spore-crystal mixture of Bacillus thuringiensis subspecies israelensis against fourth instar larvae of Aedes aegypti (L.) is described. Individual larvae are separately exposed to toxin in glass-lined miniature wells or scintillation vials. This method is free from the deaths due to predation among larvae. Such larval deaths are commonly encountered in bioassay groups of 25 larvae as currently specified in the World Health Organization guidelines. Our method offers shortened testing time, increased accuracy, and improved statistical precision.  相似文献   

10.
11.
Bacillus thuringiensis ssp. israelensis (Bti) is increasingly used as an ecologically friendly anti-mosquito agent. The bacterium cells undergo fermentation in dilute suspensions; before practical use, therefore it is necessary to concentrate the suspensions. Aggregation by polymers is a powerful tool with which to regulate the stability of suspensions. Typically, polymers at low concentrations destabilize and at high concentrations stabilize colloidal systems. Bti suspensions can be flocculated efficiently by either cationic or anionic polyelectrolytes. Cationic polyelectolytes were found to be the most efficient flocculants for bacterial suspensions. It was shown that the degree of toxicity of the flocculated Bti suspensions for biting mosquito larvae was in the same range than in non-flocculated suspension.  相似文献   

12.
Delta endotoxin of Bacillus thuringiensis subsp. israelensis.   总被引:13,自引:9,他引:13       下载免费PDF全文
From Bacillus thuringiensis subsp. israelensis, a proteinase-resistant protein was purified which exhibited toxicity to larval mosquitoes and cultured mosquito cells, lysed erythrocytes, and was lethal to mice. To extract the protein, a sporulating culture of B. thuringiensis subsp. israelensis was treated with alkali, neutralized, and incubated with trypsin and proteinase K. It was then purified by gel filtration and DEAE column chromatography. Up to 240 micrograms of toxic protein was purified from 1 g (wet weight) of culture pellet. Two closely related forms of toxic protein were obtained: the 25a and 25b proteins. The two forms comigrated near 25,000 daltons in a sodium dodecyl sulfate-polyacrylamide gel, were serologically related, and showed similar partial protease digestion profiles, but were distinguishable by DEAE chromatography and nondenaturing polyacrylamide gel electrophoresis. Protein sequencing data indicated the 25b protein lacked the two amino acids at the amino terminus of the 25a protein. A Western blot enzyme-linked immunosorbent assay of alkali-solubilized proteins that were not treated with proteases suggested the toxic 25a and 25b proteins were proteolytically derived from a larger molecule of about 28,000 daltons. Alkali-solubilized proteins from an acrystalliferous strain of B. thuringiensis subsp. israelensis and from B. thuringiensis subsp. kurstaki failed to cross-react with antibodies to the 25a protein.  相似文献   

13.
Vegetative Bacillus thuringiensis subsp. israelensis cells (6 X 10(5)/ml) achieved 100% mortality of Aedes aegypti larvae within 24 h. This larvicidal potential was localized within the cells; the cell-free supernatants did not kill mosquito larvae. However, they did contain a heat-labile hemolysin which was immunologically distinct from the general cytolytic (hemolytic) factor released during solubilization of B. thuringiensis subsp. israelensis crystals. The larvicidal potential of the vegetative cells was not due to poly-beta-hydroxybutyrate. Instead, it correlated with the ability of vegetative cells to sporulate during the bioassays. No toxicity was observed when bioassays were conducted in the presence of chloramphenicol or streptomycin. It is unlikely that the vegetative cells sporulate in the alkaline (pH 9.5 to 10.5) larval guts after ingestion. B. thuringiensis subsp. israelensis is not an alkalophile; we have been unable to grow it in culture at pH values of greater than or equal to 9.5. Moreover, we have been unable to demonstrate formation of a protective capsule. However, bacteria may replicate in the gut fluids of dead or dying mosquito larvae because their alkaline gut pH values drop markedly after exposure to the B. thuringiensis subsp. israelensis crystal toxins.  相似文献   

14.
Vegetative Bacillus thuringiensis subsp. israelensis cells (6 X 10(5)/ml) achieved 100% mortality of Aedes aegypti larvae within 24 h. This larvicidal potential was localized within the cells; the cell-free supernatants did not kill mosquito larvae. However, they did contain a heat-labile hemolysin which was immunologically distinct from the general cytolytic (hemolytic) factor released during solubilization of B. thuringiensis subsp. israelensis crystals. The larvicidal potential of the vegetative cells was not due to poly-beta-hydroxybutyrate. Instead, it correlated with the ability of vegetative cells to sporulate during the bioassays. No toxicity was observed when bioassays were conducted in the presence of chloramphenicol or streptomycin. It is unlikely that the vegetative cells sporulate in the alkaline (pH 9.5 to 10.5) larval guts after ingestion. B. thuringiensis subsp. israelensis is not an alkalophile; we have been unable to grow it in culture at pH values of greater than or equal to 9.5. Moreover, we have been unable to demonstrate formation of a protective capsule. However, bacteria may replicate in the gut fluids of dead or dying mosquito larvae because their alkaline gut pH values drop markedly after exposure to the B. thuringiensis subsp. israelensis crystal toxins.  相似文献   

15.
Abstract:  Mosquito larvae of Culex pipiens were subjected repeatedly to selection pressure with the bacterial agent Bacillus thuringiensis var. israelensis ( B.t.i .) in the laboratory. Only 2.78-fold increase in tolerance to B.t.i . was induced in C. pipiens as a result of 20 generations of selection. The tolerance of C. pipiens to B.t.i . decreased by about 58% after stopping the selection for three generations. Larval selection with B.t.i. caused a reduction in the reproductive potential of mosquito adult survivors but did not affect the adult longevity and the time of blood meal digestion ingested by female mosquitoes.  相似文献   

16.
A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression.  相似文献   

17.
Swedish soil isolates biochemically classified as Bacillus thuringiensis subsp. israelensis were further examined for genetic diversity by multilocus enzyme electrophoresis (MLEE), random amplified polymorphic DNA analysis (RAPD), pulse field gel electrophoresis (PFGE), and Southern blotting, and were compared with reference strains. All the tested strains belonging to the Bt. israelensis serotype H14 were found to be identical, as judged from the RAPD analysis. MLEE analysis gave a similar result; only one H14 strain was found to differ from the remaining H14 strains by one null allele. PFGE analysis confirmed a very close relationship between the H14 strains but revealed an SfiI restriction fragment of variable size. Southern blot analyses were carried out with probes for the chromosomally encoded flagellin gene(s) and the plasmid-encoded mosquitocidal toxins. All probes gave similar hybridization patterns in the H14 strains. The mosquito toxin probes hybridized only to the H14 strains, except for one probe hybridizing to strain 6:3, which was originally isolated from the same soil sample as strains 6:11 and 6:12. Because the RAPD, MLEE, and PFGE analyses showed that strain 6:3 appears to be unrelated to strains 6:11 and 6:12, the presence of a mosquito toxin sequence in strain 6:3 may suggest that gene transfer has occurred. Received: 8 July 1999 / Accepted: 9 August 1999  相似文献   

18.
A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression.  相似文献   

19.
Bacillus thuringiensis subsp. israelensis produces three Cry toxins (Cry4Aa, Cry4Ba and Cry11Aa) that are active against Aedes aegypti larvae. The identification of the rate-limiting binding steps of Cry toxins that are used for insect control in the field, such as those of B. thuringiensis subsp. israelensis, should provide targets for improving insecticides against important insect pests. Previous studies showed that Cry11Aa binds to cadherin receptor fragment CR7-11 (cadherin repeats 7-11) with high affinity. Binding to cadherin has been proposed to facilitate Cry toxin oligomer formation. In the present study, we show that Cry4Ba binds to CR7-11 with 9-fold lower binding affinity compared with Cry11Aa. Oligomerization assays showed that Cry4Ba is capable of forming oligomers when proteolytically activated in vitro in the absence of the CR7-11 fragment in contrast with Cry11Aa that formed oligomers only in the presence of CR7-11. Pore-formation assays in planar lipid bilayers showed that Cry4Ba oligomers were proficient in opening ion channels. Finally, silencing the cadherin gene by dsRNA (double-stranded RNA) showed that silenced larvae were more tolerant to Cry11Aa in contrast with Cry4Ba, which showed similar toxic levels to those of control larvae. These findings show that cadherin binding is not a limiting step for Cry4Ba toxicity to A. aegypti larvae.  相似文献   

20.
The relative toxicity of leaf litter to nematocerous dipteran larvae characteristic of mosquito developmental sites was investigated. Culicidae, Chironomidae, and Simuliidae taxa originating from alpine hydrosystems were tested together with two laboratory nonindigenous culicid taxa. Bioassays indicate that ingestion of 10-month-old decaying leaves from Alnus glutinosa, Populus nigra, and Quercus robur by larvae is more deleterious for Aedes aegypti, A. albopictus, Culex pipiens, Simulium variegatum, and Chironomus annularius than for A. rusticus. Histopathological observations reveal that the midgut epithelium is the main target organ of the toxic effect of dietary leaf litter, which appears to be stronger than that of previously reported tannic acid. There is a general response of the nematocerous larval midgut epithelium to dietary tannins-phenolic compounds: clear cells of the anterior midgut showing symptoms of intoxication before dark cells of the posterior midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号