首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early Miocene catarrhine fossil record of East Africa represents a diverse and extensive adaptive radiation. It is well accepted that these taxa encompass a dietary range similar to extant hominoids, in addition to some potentially novel dietary behaviour. There have been numerous attempts to infer diet for these taxa from patterns of dental allometry and incisor and molar microwear, however, morphometric analyses until now have been restricted to the post-canine dentition. It has already been demonstrated that given the key functional role of the incisors in pre-processing food items prior to mastication, there is a positive correlation between diet and incisal curvature (Deane, A.S., Kremer, E.P., Begun, D.R., 2005. A new approach to quantifying anatomical curvatures using High Resolution Polynomial Curve Fitting (HR-PCF). Am. J. Phys. Anthropol. 128(3), 630-638.; Deane, A.S., 2007. Inferring dietary behaviour for Miocene hominoids: A high-resolution morphometric approach to incisal crown curvature. Ph.D. Dissertation. The University of Toronto.). This study seeks to re-examine existing dietary hypotheses for large-bodied early Miocene fossil catarrhines by contrasting the incisal curvature for these taxa with comparative models derived from prior studies of the correlation between extant hominoid incisor curvature and feeding behaviour. Incisor curvature was quantified for 78 fossil incisors representing seven genera, and the results confirm that early Miocene fossil catarrhines represent a dietary continuum ranging from more folivorous (i.e., Rangwapithecus) to more frugivorous (i.e., Proconsul) diets, as well as novel dietary behaviours that are potentially similar to extant ceboids (i.e., Afropithecus). Additionally, early Miocene fossil catarrhine incisors are less curved than extant hominoid incisors, indicating a general pattern of increasing mesio-distal and labial curvature through time. This pattern of morphological shifting is consistent with the Red Queen Effect (Van Valen, L., 1973. A new evolutionary law. Evol. Theory 1, 1-30), which predicts that taxa that are removed from one another by geological time, although potentially having similar diets, may exhibit differing degrees of a similar dietary adaptation (i.e., differing degrees of incisal curvature).  相似文献   

2.
Dental topographic analysis is the quantitative assessment of shape of three‐dimensional models of tooth crowns and component features. Molar topographic curvature, relief, and complexity correlate with aspects of feeding behavior in certain living primates, and have been employed to investigate dietary ecology in extant and extinct primate species. This study investigates whether dental topography correlates with diet among a diverse sample of living platyrrhines, and compares platyrrhine topography with that of prosimians. We sampled 111 lower second molars of 11 platyrrhine genera and 121 of 20 prosimian genera. For each tooth we calculated Dirichlet normal energy (DNE), relief index (RFI), and orientation patch count (OPCR), quantifying surface curvature, relief, and complexity respectively. Shearing ratios and quotients were also measured. Statistical analyses partitioned effects of diet and taxon on topography in platyrrhines alone and relative to prosimians. Discriminant function analyses assessed predictive diet models. Results indicate that platyrrhine dental topography correlates to dietary preference, and platyrrhine‐only predictive models yield high rates of accuracy. The same is true for prosimians. Topographic variance is broadly similar among platyrrhines and prosimians. One exception is that platyrrhines display higher average relief and lower relief variance, possibly related to lower relative molar size and functional links between relief and tooth longevity distinct from curvature or complexity. Explicitly incorporating phylogenetic distance matrices into statistical analyses of the combined platyrrhine‐prosimian sample results in loss of significance of dietary effects for OPCR and SQ, while greatly increasing dietary significance of RFI. Am J Phys Anthropol 153:29–44, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Accurately interpreting fossil primate dietary behaviour is necessary to fully understand a species' ecology and connection to its environment. Traditional methods developed to infer diet from hominoid teeth successfully group taxa into broad dietary categories (i.e., folivore, frugivore) but often fail to represent the range of dietary variability characteristic of living apes. This oversimplification is not only a consequence of poor resolution, but may also reflect the use of similar fallback resources by closely related taxa with dissimilar diets. This study demonstrates that additional dietary specificity can be achieved using a morphometric approach to hominoid incisor curvature. High-resolution polynomial curve fitting (HR-PCF) was used to quantify the incisor curvatures of closely related hominoid taxa that have dissimilar diets but similar morphological adaptations to specific keystone resources (e.g., Gorilla gorilla beringei vs. G. g. gorilla). Given the key role of incisors in food processing, it is reasonable to assume that these teeth will be at least partially influenced by the unique selective pressures imposed by the mechanical loading specific to individual diets. Results from this study identify a strong correlation between hominoid dietary proportions and incisor linear dimensions and curvature, indicating that more pronounced incisor curvature is positively correlated with higher levels of frugivory. Hard-object frugivores have the greatest mesiodistal and cervico-incisal curvature and dedicated folivores have the least curved incisors. Mixed folivore/frugivores are morphological intermediates between dedicated folivores and hard- and soft-object frugivores. Mesiodistal curvature varied only in the degree of curvature; however, cervico-incisal curvature was shown to differ qualitatively between more frugivorous and more folivorous taxa. In addition to identifying a greater range of dietary variability among hominoids, this study also demonstrates that HR-PCF is capable of identifying morphological distinctions between closely related taxa with overlapping diets that rely on similar fallback foods (e.g., Pan paniscus vs. P. troglodytes).  相似文献   

4.
The correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.  相似文献   

5.
Comparative analyses of molar shape figure prominently in Miocene hominoid evolutionary studies, and incomplete understanding of functional and phylogenetic influences on molar shape variation can have direct consequences for the interpretation of fossil taxa. Molar flare is a shape trait whose polarity, phylogenetic distribution, and functional significance have been sources of contention. To clarify the determinants of molar flare variation in the hominoid radiation, a combination of statistical methods was employed to investigate the effects of diet, phylogeny, and geologic age upon several measures of molar shape, to identify interactions among these factors, and to estimate their relative influence. Classic indices of molar crown shape and cusp relief are highly significantly associated with diet and show no clear phylogenetic or temporal patterning. Correlations with diet are insignificant when phylogenetic effects are controlled, a result which is interpreted as an artifact of the distribution of folivory in the Miocene hominoid radiation. Possession of pronounced molar flare was found to be the primitive condition for Miocene hominoids, but molar flare reduction cannot be considered a crown hominoid synapomorphy. Molar flare is strongly correlated with geologic age but differs significantly among dietary categories when the effects of time are controlled. Among contemporaneous taxa, hard-object feeders consistently show the highest levels of flare. Molar flare reduction is hypothesized to arise from realignment of cusp positions to maximize molar shearing and increase working occlusal surface area, while variation in flare among contemporaneous taxa may be due, at least in part, to enamel thickness variation. The pronounced molar flare of Otavipithecus is interpreted as a primitive retention, although alternative dietary and phylogenetic interpretations cannot be excluded. A dramatic reversal of molar flare reduction in Mio-Pliocene hominins is interpreted as a synapomorphy of the crown hominin clade, thus supporting the hominin status of the Lukeino hominine. The last common ancestor of the Pan-Homo clade is predicted to have possessed relatively non-flaring molars, and implications of this hypothesis for early hominin recognition are discussed.  相似文献   

6.
The forelimbs of 12 genera of New World monkeys, two genera of Old World monkeys, and a gibbon were dissected. Of the 54 muscles examined, 19 exhibited significant intergeneric variation. We present arguments for which morphologies are primitive and which are derived within platyrrhines and within anthropoids. We conclude that the forelimbs of Cebus apella and Callicebus moloch represent good models of the ancestral anthropoid morphology. Thus among living anthropoids they are most appropriate for comparisons with early fossil anthropoids. They are also useful for determining whether myological anomalies of human aneuploids are atavistic. Wagner tree analyses were conducted to assess the value of these myological characters in phylogenetic studies of platyrrhines. In most respects the Wagner trees were consonant with phylogenies previously proposed, although some hypothesized trees are less parsimonious than others in explaining our data. There is an unexpected number of derived features shared by Aotus and the Atelines. There are marked dissimilarities in forelimb musculature between Aotus and Callicebus.  相似文献   

7.
Diets of the Oligocene anthropoidsAegyptopithecus zeuxis andApidium phiomense are inferred from measurements of the anterior and posterior dentition of these species. Ideas are presented which can be checked as the hypodigms expand. Comparisons with extant anthropoids demonstrate a probably frugivorous diet forA. zeuxis, while the diet ofA. phiomense was not characterized by a high degree of frugivory requiring extensive incisal preparation of food. Additional inferences about the diet ofA. phiomense might be gleaned from future examination of incisor morphology, implantation and occlusion. Even when allowance is made for the presence of P2 inA. phiomense, the dietary position of this species with respect to extant anthropoids is equivocal, and it is possible that the normal anthropoid relationship between anterior and posterior dentitions, with a small incisor span correlating with a great amount of mastication, had yet to be developed. This report is based in part on an invited paper “Function in primate masticatory musculature as demonstrated by muscle weights” delivered at the symposium “The Behavioral and Morphological Adaptations to Diet Among Primates,” 46th Annual Meeting, American Association of Physical Anthropologists, Seattle, Washington, April 13–16, 1977.  相似文献   

8.
In chimpanzees, the cutting edge of the incisor battery is longer in relation to the length of the molar row than in any other hominoid, extant or fossil, the only other lineage approaching it being the orangutan. Apart from their increased mesio-distal dimensions, the upper and lower incisors of chimpanzees differ in additional ways from those of almost all other hominoids. The I2/ is enlarged, so that the difference in size between it and the central upper incisor is less than it is in the heteromorphic upper incisors of other hominoids. The lower incisors are expanded mesio-distally, so much so that isolated I/2 crowns can resemble upper central incisors. In chimpanzees the lingual surface of the lower incisors is generally more procumbent than it is in other hominoids, which have more vertically oriented incisor crowns and there is a greater difference in enamel thickness between labial and lingual sides. The re-orientation of the lower incisor crown is reflected in the root, which in lateral view is anteriorly concave in chimpanzees whereas it is more orthogonal or convex in other hominoids. The molars of chimpanzees, especially the lowers, have extensive and relatively deep occlusal basins, and the main cusps are peripheralised and labio-lingually compressed, making them more trenchant than those of other hominoids. This paper examines the incisor-lower molar proportions in extinct and living hominoids and develops a new hypothesis about the evolution of the dentition of chimpanzees and links it to their diet. It also examines the incisor-molar proportions of hominids and African apes in order to throw light on the phylogenetic relationships between them. It is shown that chimpanzees are highly derived in this respect and that several recent ideas concerning the chimp-like appearance of the last common ancestor of hominids and African apes are likely to be incorrect.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

9.
Previous studies have recognized two patterns of distal femoral morphology among the specimens from Hadar (Ethiopia) assigned to Australopithecus afarensis. Size and shape differences between the well-preserved large (AL 333-4) and small (AL 129-1a) distal femora have been used to invoke both taxonomic and functional differences within the A. afarensis hypodigm. Nevertheless, prior studies have not analyzed these specimens in a multivariate context, nor have they compared the pattern of shape differences between the fossils to patterns of sexual dimorphism among extant taxa (i.e., the manner in which males and females differ). This study reexamines morphometric differences between the above specimens in light of observed levels of variation and patterns of sexual dimorphism among extant hominoids. Eight extant reference populations were sampled to provide a standard by which to consider size and shape differences between the fossils. Samples include three populations of modern humans, two subspecies of Pan troglodytes, three subspecies of Gorilla gorilla, Pan paniscus, and Pongo pygmaeus. Using size ratios and scale-free "shape" data (both derived from 2-D coordinate landmarks), size and shape differences between the fossils were evaluated against variation within each reference population using an exact randomization procedure. Growth Difference Matrix Analysis (GDMA) was used to test whether the pattern of morphological differences between the fossils differs significantly from patterns of sexual dimorphism observed among the ten extant groups. Overall morphometric affinities of the fossils to extant taxa were explored using canonical variates analysis (CVA).Results of the randomization tests indicate that the size difference between the Hadar femora can be easily accommodated within most hominoid taxa at the subspecific level (though not within single-sex samples). In addition, the magnitude of shape differences between the fossils can be commonly sampled even within most single-sex samples of a single hominoid subspecies. The pattern of morphological differences between the fossils does not differ statistically from any average pattern of femoral shape dimorphism observed among living hominoids. Moreover, contrary to prior claims, and despite a size disparity between the fossils greater than is typically observed within some chimpanzee and human populations, the two Hadar fossils appear to be much more similar to one another in overall shape than either specimen is to any extant hominoid group.  相似文献   

10.
The degree of canine size sexual dimorphism and relative canine size, which have been related to levels of agonistic behaviour amongst living anthropoid primates, together with relative molar size, are evaluated in the fossil hominoid Oreopithecus bambolii from the Late Miocene of Italy. Although Oreopithecus displays a significant degree of canine height sexual dimorphism, using allometric techniques and body mass estimates for fossil species, it is shown that Oreopithecus males are microdont (smaller postcanine as well as canine teeth than expected) when compared to most living hominoids and its putative ancestor Dryopithecus. Canine reduction in Oreopithecus includes both crown height and, especially, basal area, and most closely resembles the condition found in the pygmy chimpanzee Pan paniscus. Interestingly, it had been previously proposed that Oreopithecus displays, like pygmy chimpanzees, a paedomorphic cranial morphology resulting in a reduction of facial prognathism, which could be related to microdontia in both taxa. Independent canine reduction in several anthropoid lineages (including hominids and P. paniscus) has been related to a relaxation of the selection pressure favouring canine use as a weapon. Although changes in socio-sexual behaviour, as documented in P. paniscus, cannot be currently discarded in Oreopithecus, canine reduction could be also alternatively (although not exclusively) interpreted as an aspect of generalized microdontia. The latter is best considered an adaptive readjustment required by the paedomorphic reduction of prognathism and the resulting lack of space to accommodate the adult dentition. This mechanism of canine reduction highlights the significance of developmental constraints in evolution and had not been previously suggested for any anthropoid primate.  相似文献   

11.
Recent Miocene fossil discoveries of large hominoids resemble orangutans. Since the evolution of large body size was functionally related to a powerful masticatory system in Miocene ape radiations, a better understanding of adaptations in extant orangutans will be informative of hominoid evolution. It is suggested here, based on the behavioral ecology of extant orangutans, that foraging energetics and large body size are tied to a dietary shift that provided access to and utilization of resources not generally available to other primates.  相似文献   

12.
Despite considerable post-cranial and cranial morphological overlap with Proconsul, Afropithecus turkanensis is distinguished from that taxon by a suite of anterior dental and gnathic characters shared in common with extant pitheciin monkeys (i.e. low crowned, robust and laterally splayed canines, procumbent incisors, prognathic premaxilla, powerful temporalis muscles, reduced or absent maxillary sinuses, and deep mandibular corpora). Pitheciins are unique among living anthropoids because their canines serve a habitual dietary function and are not strictly influenced by inter-male competition. Given the functional association between pitheciin canine morphological specializations and sclerocarp foraging, a feeding strategy where the hard pericarps of unripe fruit are mechanically deformed by the canines, it has been suggested that Afropithecus may also have used its canines in a dietary context. This is confirmed by quantitative morphometric analyses of Afropithecus canine curvature and basal dimensions demonstrating that Afropithecus and extant pitheciins (Chiropotes, Cacajao) are distinguished from all other anthropoids by pronounced and evenly distributed mesial canine crown contours as well as greater resistance to canine bending in both the mesiodistal and labiolingual axes. In addition, Afropithecus, Chiropotes and Cacajao are also shown to have significantly longer and more curved premaxillae with greater incisor procumbency that effectively isolates the incisor and canine functional complexes. These morphological similarities are a result of convergence and not a shared derived ancestry. Despite their considerable morphological overlap, it is unlikely that Afropithecus and extant pitheciin diets are identical given significant dissimilarities in their post-canine morphology, maximum angular gape and body size. Nevertheless, Afropithecus canine dietary function is unique among hominoids and may have been a key component for the expansion of hominoids into Eurasia at the end of the early Miocene.  相似文献   

13.
The late Miocene hominoid Lufengpithecus from Yunnan Province, China, is crucial for understanding hominoid evolution in Asia. Given that age at first permanent molar emergence is a key life-history trait in primates, the present study determined the age at death of the Lufengpithecus lufengensis juvenile PA868, which was in the process of erupting its first molar. Using a perikymata periodicity of 7-11 days, along with estimation of cusp formation time and the postnatal delay of crown mineralization, perikymata counts obtained from the permanent central incisor and canine germs indicate that the age at death of PA868 was 2.4-4.5 years based on the central incisor germ, and 2.5-4.7 years based on the canine germ. The age at the first molar emergence was actually slightly younger (by about 0.3 years), as demonstrated by tiny wear facets on this tooth, which indicate that gingival emergence had occurred sometime before death. The average age at first molar emergence of Lufengpithecus lufengensis PA868 is estimated to be 3.2-3.3 years, with a range of 2.1-4.4 years. In comparison to extant primates and other fossil hominoids, the life history of Lufengpithecus lufengensis is similar to that of extant great apes and the Miocene hominoids Afropithecus turkanensis and Sivapithecus parvada, as well as Plio-Pleistocene Australopithecus, and different from monkeys, gibbons, and modern humans.  相似文献   

14.
Researchers often relate anthropoid incisor size to diet and ingestive behaviors. It is suggested that primates that frequently consume large, tough foods (i.e., fruits) require large incisors to process these items. This idea has been difficult to test because of a lack of data on anterior tooth use in wild primates, and a lack of understanding concerning the relationships between food properties and ingestive behaviors. The first field study of primate ingestive behaviors has recently been completed for four species of Sumatran anthropoids: Hylobates lar, Macaca fascicularis, Pongo pygmaeus, and Presbytis thomasi [Ungar, American Journal of Physical Anthropology 95:197–219, 1994; International Journal of Primatology 16:221–245, 1995]. This paper documents both relative and absolute incisor row width differences among these taxa, and evaluates the relationships between incisor size and feeding behaviors for specific taxa. Results indicate that differences in incisor size among these species cannot all be explained by degree of frugivory, food item size, or even degree of incisor use in ingestion alone. It is therefore suggested that inferences of dietary differences based on largely or solely on differences in incisor sizes of specific fossil anthropoid taxa should be approached with caution. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The observed social systems of extant apes and humans suggest that the common ancestral state for Miocene hominoids was living in multimale–multifemale groups that exhibited a tendency to fission and fusion in response to ecological and/or social variables. The Hominoidea share a set of social commonalities, notably a social niche that extends beyond kin and beyond the immediate social group, as well as extensive intraspecific flexibility in social organization. We propose that an essential feature of hominoid evolution is the shift from limited plasticity in a generalized social ape to expanded behavioral plasticity as an adaptive niche. Whereas in most nonhominoid primates variability and flexibility take the shape of specific patterns of demographic flux and interindividual relationships, we can consider behavioral flexibility and plasticity as a means to an end in hominoid socioecological landscapes. In addition, the potential for innovation, spread, and inheritance of behavioral patterns and social traditions is much higher in the hominoids, especially the great apes, than in other anthropoid primates. We further suggest that this pattern forms a basis for the substantial expansion of social complexity and adaptive behavioral plasticity in the hominins, especially the genus Homo. Our objectives in this article are threefold: 1) summarize the variation in the social systems of extant hominoid taxa; 2) consider the evolutionary processes underlying these variations; and 3) expand upon the traditional socioecological model, especially with respect to reconstructions of early hominin social behavior. We emphasize a central role for both ecological and social niche construction, as well as behavioral plasticity, as basal hominoid characteristics. Over evolutionary time these characteristics influence the patterns of selection pressures and the resulting social structures. We propose that a mosaic of ecological and social inheritance patterns should be considered in the reconstruction of early hominin social systems.  相似文献   

16.
This paper reviews the non-dental morphological configuration of Miocene hominoids with special reference to the hypothesis of linear relationships between certain fossil species and living analogues. Metrical analysis of the wrist shows thatDryopithecus africanus andPliopithecus vindobonensis are unequivocally affiliated with the morphological pattern of quadrupedal monkeys. Similar analyses of the fossil hominoid elbow shows that they are more cercopithecoid-like than hominoid-like. Multivariate analysis of theP. vindobonensis shoulder in the matrix of extant Anthropoidea indicate that this putative hylobatine fossil shows no indication of even the initial development of hominoid features. The total morphological pattern of theD. africanus forelimb as assessed by principal coordinates analysis of allometrically adjusted shape variables has little resemblance toPan. Likewise, the feet and proximal femora of the Miocene fossils are unlike any living hominoid species. Even theD. africanus skull is similar to extant cercopithecoids in several features. Although ancestors cannot be expected to resemble descendants in every way, the striking dissimilarity between Miocene and extant hominoids seems to eliminate the consideration of a direct ancestor-descendant relationship between specific Miocene and modern forms.  相似文献   

17.
Size variations in the anterior dentition were analyzed for 26 species of strepsirhine primates. The upper and lower incisor rows of strepsirhines, like those of anthropoid primates, scale isometrically with body size. Within the order Primates, strepsirhines exhibit the smallest incisors relative to body size, followed in increasing size by tarsiers, platyrrhines, and catarrhines. If the lateral teeth of the indriid toothcomb are interpreted as incisors and not canines, correlations between mandibular tooth size variables and body weight are maximized. The upper incisors of strepsirhines are extremely small and frequently widely separated, most likely to minimize occlusion with the toothcomb. Species deviations for assorted size variables of the anterior dentition generally fail to reflect functional variations in the use of the anterior teeth; some of the variables, however, do reflect taxonomic differences within the Strepsirhini. Although toothcomb size variations among extant strepsirhines are more readily interpreted in terms of gum feeding and bark scraping than they are in terms of grooming, anterior dental morphology as a whole is more easily explained by a grooming hypothesis when existing models of toothcomb origins are considered.  相似文献   

18.
The phylogenetic relationships of the late Eocene anthropoids Catopithecus browni and Proteopithecus sylviae are currently a matter of debate, with opinion divided as to whether these taxa are stem or crown anthropoids. The phylogenetic position of Catopithecus is of particular interest, for, unlike the highly generalized genus Proteopithecus, this taxon shares apomorphic dental and postcranial features with more derived undoubted catarrhines that appear in the same region 1-2 Ma later. If these apomorphies are homologous and Catopithecus is a stem catarrhine, the unique combination of plesiomorphic and apomorphic features preserved in this anthropoid would have important implications for our understanding of the crown anthropoid morphotype and the pattern of morphological character transformations that occurred during the early phases of stem catarrhine evolution.Well-preserved astragali referrable to Proteopithecus, Catopithecus, and the undoubted early Oligocene stem catarrhine Aegyptopithecus have provided additional morphological evidence that allows us to further evaluate competing hypotheses of interrelationships among Eocene-Oligocene Afro-Arabian anthropoids. Qualitative observations and multivariate morphometric analyses reveal that the astragalar morphology of Proteopithecus is very similar to that of early Oligocene parapithecids and living and extinct small-bodied platyrrhines, and strengthens the hypothesis that the morphological pattern shared by these taxa is primitive within crown Anthropoidea. In contrast, Catopithecus departs markedly from the predicted crown anthropoid astragalar morphotype and shares a number of apomorphic features (e.g., deep cotylar fossa, laterally projecting fibular facet, trochlear asymmetry, mediolaterally wide astragalar head) with Aegyptopithecus and Miocene-Recent catarrhines. The evidence from the astragalus complements other independent data from the dentition, humerus and femur of Catopithecus that support this taxon's stem catarrhine status, and we continue to maintain that oligopithecines are stem catarrhines that constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines.  相似文献   

19.
Our understanding of locomotor evolution in anthropoid primates has been limited to those taxa for which good postcranial fossil material and appropriate modern analogues are available. We report the results of an analysis of semicircular canal size variation in 16 fossil anthropoid species dating from the Late Eocene to the Late Miocene, and use these data to reconstruct evolutionary changes in locomotor adaptations in anthropoid primates over the last 35 Ma. Phylogenetically informed regression analyses of semicircular canal size reveal three important aspects of anthropoid locomotor evolution: (i) the earliest anthropoid primates engaged in relatively slow locomotor behaviours, suggesting that this was the basal anthropoid pattern; (ii) platyrrhines from the Miocene of South America were relatively agile compared with earlier anthropoids; and (iii) while the last common ancestor of cercopithecoids and hominoids likely was relatively slow like earlier stem catarrhines, the results suggest that the basal crown catarrhine may have been a relatively agile animal. The latter scenario would indicate that hominoids of the later Miocene secondarily derived their relatively slow locomotor repertoires.  相似文献   

20.
To highlight adaptive transformations in craniomandibular form during anthropoid origins, symphyseal character states and underlying masticatory loading regimes were investigated vis-à-vis shifts in diet and body size. A study of fossil anthropoids is possible because variation in symphyseal fusion is continuous and directly proportional to the amount of symphyseal stress and because such variation can be considered a series of discrete character states each with unique functional underpinnings. Using recent systematic renderings of Eocene and Oligocene taxa as a template with which to assess character evolution, this analysis indicates when, and in which clade(s), specific masticatory features became fixed and thus diagnostic. A general trend throughout early anthropoid evolution is for descendent taxa to be progressively larger than ancestral forms. Coupled with this pattern is the tendency for larger-bodied fossil anthropoids to have ingested tougher diets variably consisting of thick-coated, unripe fruits and/or leaves. Mastication of mechanically tougher foods entails greater repetitive loading of the mandible and requires relatively larger amounts of balancing-side muscle force, thus resulting in correspondingly greater symphyseal fusion due to elevated dorsoventral shear. With a single exception, these adaptive transformations characterize the evolutionary pathway leading both to parapithecines and a catarrhine:platyrrhine clade (crown anthropoids). While the ancestor of crown anthropoids would have possessed a body size, diet and masticatory adaptations similar to parapithecines, such a common suite of features evolved independently. Moreover, the evolution of an early-fusing symphysis and associated wishboning loading regime of catarrhines and platyrrhines is unique among all anthropoids. Lastly, the apparent lack of reversals in symphyseal fusion indicates the improbability of phylogenetic hypotheses in which a relationship is proposed between 'ancestral' taxa with a greater degree of symphyseal fusion and 'descendent' anthropoids with a lesser degree of ossification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号