首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的通过条件启动子pCTR4的质粒构建以及其在新生隐球菌中的同源置换,研究其在隐球菌基因表达调控中的应用。方法应用套叠PCR,构建含报告基因NEO的铜离子抑制性启动子质粒pNEO/CTR4和启动子同源重组框,并利用基因枪将其转化入新生隐球菌感受态细胞,常规及实时定量PCR检测条件启动子对目的基因的转录调控效应。结果成功构建了质粒pNEO/CTR和隐球菌条件启动子重建菌株,条件启动子pCTR4对目的基因具有预期的转录诱导和抑制效果。结论新建铜离子抑制性启动子质粒pNEO/CTR4可以应用于对隐球菌目的基因表达水平的调控;隐球菌泛素编码基因UBI 1并非致死性关键基因。我们的研究为今后新生隐球菌泛素系统的分子致病机制研究奠定了基础。  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The ΦCTX-based integration vector pYM101 harboring a tightly controlled modified phage T7 early gene promoter/LacIq repressor (T7/LacI) system was constructed for the generation of unmarked conditional mutants in Pseudomonas aeruginosa. Promoter activity of the T7/LacI system was demonstrated to be dependent on the presence of the inducer isopropyl -β-D-1-thiogalactopyranoside (IPTG), as evaluated by measuring β-galactosidase activity. In the absence of the inducer, the promoter was silent as its activity was lower than those of a promoter-less lacZ control. Unmarked conditional mutants of four predicted essential genes (lolCDE (PA2988-86), lpxC (PA4406), rho (PA5239), and def (PA0019)) were successfully constructed using this recombination system. In the absence of IPTG, the growth of all mutants was repressed; however, the addition of either 0.1 or 1 mM IPTG restored growth rates to levels nearly identical to wild-type cells. It was therefore demonstrated that the inducible integration vector pYM101 is suitable for the creation of unmarked conditional mutants of P. aeruginosa, and is particularly useful for examining the function of essential genes.  相似文献   

13.
14.
15.
The Escherichia coli-Helicobacter pylori shuttle vector pHeL2 was modified to introduce the inducible LacI(q)-pTac system of E. coli, in which the promoters were engineered to be under the control of H. pylori RNA polymerase. The amiE gene promoter of H. pylori was taken to constitutively express the LacI(q) repressor. Expression of the reporter gene lacZ was driven by either pTac (pILL2150) or a modified version of the ureI gene promoter in which one or two LacI-binding sites and/or mutated nucleotides between the ribosomal binding site and the ATG start codon (pILL2153 and pILL2157) were introduced. Promoter activity was evaluated by measuring beta-galactosidase activity. pILL2150 is a tightly regulated expression system suitable for the analysis of genes with low-level expression, while pILL2157 is well adapted for the controlled expression of genes encoding recombinant proteins in H. pylori. To exemplify the usefulness of these tools, we constructed conditional mutants of the putative essential pbp1 and ftsI genes encoding penicillin-binding proteins 1 and 3 of H. pylori, respectively. Both genes were cloned into pILL2150 and introduced in the parental H. pylori strain N6. The chromosomally harbored pbp1 and ftsI genes were then inactivated by replacing them with a nonpolar kanamycin cassette. Inactivation was strictly dependent upon addition of isopropyl-beta-d-thiogalactopyranoside. Hence, we were able to construct the first conditional mutants of H. pylori. Finally, we demonstrated that following in vitro methylation of the recombinant plasmids, these could be introduced into a large variety of H. pylori isolates with different genetic backgrounds.  相似文献   

16.
CTR1 gene (SLC31A1 according to Entrez data base) product is the main candidate for the role of eukaryotic copper importer, whose tissue-specific function is still unclear. In this research steady state CTR1-mRNA level was measured with semiquantitative RT-PCR analysis and compared with copper status in rat organs, in which copper metabolism is changed during development (liver, cerebellum, choroid plexus and mammary gland). It has been shown that CTR1 gene activity correlates with the rate of both intracellular and extracellular copper-containing enzymes formation. In mesenchymal origin cells of newborns the CTR1 gene activity decreases when high copper concentrations in cell nucleus is reached. According to phylogenetic analysis CTR1 has the most conservative transmembrane domains 2 and 3 (TMD), containing 7 amino acid residues able to coordinate copper atom. A model of cuprophylic channel has been proposed, which is formed by TMD2 and TMD3 in homotrimeric CTR1 complex. In this model copper is transported through the channel to cytosolic C-terminal motif His-Cys-His, which ability to coordinate Cu(I) was assessed by molecular modeling (MM+, ZINDO/1). Theoretical possibility of copper transfer from His-Cys-His CTR1 C-terminal motif to cytosolic Cys-X-X-Cys Cu(I) chaperon sites has been shown. The role of CTR1 in copper metabolism as copper donor and acceptor is discussed.  相似文献   

17.
18.
19.
20.
An 815 by region of the promoter of the Saccharomyces cerevisiae gene CTR/HNM1, encoding choline permease was sequenced and its regulatory function analysed by deletion studies in an in-frame promoter-lacZ construct. In addition to the TATA box, a 10 by motif (consensus 5′-CATGTGAAAT-3′) was found to be mandatory for CTR/HNM1 expression. This ‘decamer’ motif is located between nucleotides ?262 and ?271 and is identical in 9 of 10 by with the regulatory motif found in the S. cerevisiae INO1 and CHO1 genes. Constructs with the 10 by sequence show high constitutive expression, while elimination or alterations at three nucleotide positions, of the decamer motif in the context of an otherwise unchanged promoter leads to total loss of β-galactosidase production. Expression of the CTR/HNM1 gene in wild-type cells is regulated by the phospholipid precursors inositol and choline; no such influence is seen in cells bearing mutations in the phospholipid regulatory genes INO2, INO4, and OPI1. There is no regulation by INO2 and OPI1 in the absence of the decamer motif. However constructs not containing this sequence (promoter intact to positions ?213 or ?152) are still controlled by INO4. Other substrates of the choline permease, i.e. ethanolamine, nitrogen mustard and nitrogen half mustard do not regulate expression of CTR/HNM1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号