首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current strategies for determining the structures of membrane proteins in lipid environments by NMR spectroscopy rely on the anisotropy of nuclear spin interactions, which are experimentally accessible through experiments performed on weakly and completely aligned samples. Importantly, the anisotropy of nuclear spin interactions results in a mapping of structure to the resonance frequencies and splittings observed in NMR spectra. Distinctive wheel-like patterns are observed in two-dimensional 1H-15N heteronuclear dipolar/15N chemical shift PISEMA (polarization inversion spin-exchange at the magic angle) spectra of helical membrane proteins in highly aligned lipid bilayer samples. One-dimensional dipolar waves are an extension of two-dimensional PISA (polarity index slant angle) wheels that map protein structures in NMR spectra of both weakly and completely aligned samples. Dipolar waves describe the periodic wave-like variations of the magnitudes of the heteronuclear dipolar couplings as a function of residue number in the absence of chemical shift effects. Since weakly aligned samples of proteins display these same effects, primarily as residual dipolar couplings, in solution NMR spectra, this represents a convergence of solid-state and solution NMR approaches to structure determination.  相似文献   

2.
An approach is described for rapidly determining protein structures by NMR that utilizes proteins containing 13C-methyl labeled Val, Leu, and Ile (1) and protonated Phe and Tyr in a deuterated background. Using this strategy, the key NOEs that define the hydrophobic core and overall fold of the protein are easily obtained. NMR data are acquired using cryogenic probe technology which markedly reduces the spectrometer time needed for data acquisition. The approach is demonstrated by determining the overall fold of the antiapoptotic protein, Bcl-xL, from data collected in only 4 days. Refinement of the Bcl-xL structure to a backbone rmsd of 0.95 Å was accomplished with data collected in an additional 3 days. A distance analysis of 180 different proteins and structure calculations using simulated data suggests that our method will allow the global folds of a wide variety of proteins to be determined.  相似文献   

3.
O Lichtarge  O Jardetzky  C H Li 《Biochemistry》1987,26(18):5916-5925
The 1H NMR spectra of human beta-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75 degrees C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that beta-endorphin is a random coil in water but that it forms 50% alpha-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of alpha-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus [Li, C. H. (1982) Cell (Cambridge, Mass.) 31, 504-505]. Our findings suggest that these two receptors may specifically recognize alpha-helices.  相似文献   

4.
Protein structure determination in solution by NMR spectroscopy   总被引:1,自引:0,他引:1  
The introduction of nuclear magnetic resonance (NMR) spectroscopy as a second method for protein structure determination at atomic resolution, in addition to x-ray diffraction in single crystals, has already led to a significant increase in the number of known protein structures. The NMR method provides data that are in many ways complementary to those obtained from x-ray crystallography and thus promises to widen our view of protein molecules, giving a clearer insight into the relation between structure and function.  相似文献   

5.
As an alternative to X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy in solution can be used for three-dimensional structure determination of small membrane proteins, preferably proteins with beta-barrel fold. This paper reviews recent achievements as well as limiting factors encountered in solution NMR studies of membrane proteins. Our particular interest has been focused on supplementing structure determination with data on the solvation of the proteins in the mixed micelles with detergents that are used to reconstitute membrane proteins for the NMR experiments. For the Escherichia coli outer membrane protein X (OmpX) in dihexanoylphosphatidylcholine (DHPC) micelles, such studies showed that the central part of the protein is covered with a fluid monolayer of lipid molecules, which seems to mimic quite faithfully the embedding of the protein in the lipid phase of the biological membrane. The implication is that the micellar systems used in this instance for the NMR studies of the membrane protein should also be suitable for further investigations of functional interactions with other proteins or low-molecular weight ligands.  相似文献   

6.
One major remaining problem in structural biology is to elucidate the structure and mechanism of function of membrane proteins. On the basis of preliminary information from genome projects, it is now estimated that up to 50,000 different membrane proteins may exist in the human being and that virtually every life process proceeds, sooner or later, through a membrane protein. Solid-state NMR spectroscopy in high magnetic field is rapidly developing into a widely applicable tool to describe the structure and help understand the mechanism of function of a membrane protein. Recent work in applied solid-state NMR spectroscopy crosses the boundary between the biological and the physical sciences, and aims at increasing the predictive range of this biophysical method.  相似文献   

7.
We present a comprehensive analysis of protein dynamics for a micro-crystallin protein in the solid-state. Experimental data include 15N T 1 relaxation times measured at two different magnetic fields as well as 1H–15N dipole, 15N CSA cross correlated relaxation rates which are sensitive to the spectral density function J(0) and are thus a measure of T 2 in the solid-state. In addition, global order parameters are included from a 1H,15N dipolar recoupling experiment. The data are analyzed within the framework of the extended model-free Clore–Lipari–Szabo theory. We find slow motional correlation times in the range of 5 and 150 ns. Assuming a wobbling in a cone motion, the amplitude of motion of the respective amide moiety is on the order of 10° for the half-opening angle of the cone in most of the cases. The experiments are demonstrated using a perdeuterated sample of the chicken α-spectrin SH3 domain.  相似文献   

8.
About 8000 genes encode membrane proteins in the human genome. The information about their druggability will be very useful to facilitate drug discovery and development. The main problem, however, consists of limited structural and functional information about these proteins because they are difficult to produce biochemically and to study. In this paper we describe the strategy that combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation (CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards expedited identification of the hit compounds against a new uncharacterized membrane protein as a potentially druggable target. These hits can then be further characterized and optimized to develop the initial lead compound quicker. We illustrate such “omics” approach for drug discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes HIGD1A and HIGD1B.  相似文献   

9.
The automation of protein structure determination using NMR is coming of age. The tedious processes of resonance assignment, followed by assignment of NOE (nuclear Overhauser enhancement) interactions (now intertwined with structure calculation), assembly of input files for structure calculation, intermediate analyses of incorrect assignments and bad input data, and finally structure validation are all being automated with sophisticated software tools. The robustness of the different approaches continues to deal with problems of completeness and uniqueness; nevertheless, the future is very bright for automation of NMR structure generation to approach the levels found in X-ray crystallography. Currently, near completely automated structure determination is possible for small proteins, and the prospect for medium-sized and large proteins is good.  相似文献   

10.
Solution NMR structure determination of proteins revisited   总被引:2,自引:2,他引:0  
This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified.  相似文献   

11.
12.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

13.
14.
Araç D  Murphy T  Rizo J 《Biochemistry》2003,42(10):2774-2780
Two methods for detecting protein-protein interactions in solution using one-dimensional (1D) NMR spectroscopy are described. Both methods rely on measurement of the intensity of the strongest methyl resonance (SMR), which for most proteins is observed at 0.8-0.9 ppm. The severe resonance overlap in this region facilitates detection of the SMR at low micromolar and even sub-micromolar protein concentrations. A decreased SMR intensity in the 1H NMR spectrum of a protein mixture compared to the added SMR intensities of the isolated proteins reports that the proteins interact (SMR method). Decreased SMR intensities in 1D 13C-edited 1H NMR spectra of 13C-labeled proteins upon addition of unlabeled proteins or macromolecules also demonstrate binding (SMRC method). Analysis of the interaction between XIAP and Smac, two proteins involved in apoptosis, illustrates both methods. A study showing that phospholipids compete with the neuronal core complex for Ca2+-dependent binding to the presynaptic Ca2+-sensor synaptotagmin 1 illustrates the usefulness of the SMRC method in studying multicomponent systems.  相似文献   

15.
One of the major goals of structural genomics projects is to determine the three-dimensional structure of representative members of as many different fold families as possible. Comparative modeling is expected to fill the remaining gaps by providing structural models of homologs of the experimentally determined proteins. However, for such an approach to be successful it is essential that the quality of the experimentally determined structures is adequate. In an attempt to build a homology model for the protein dynein light chain 2A (DLC2A) we found two potential templates, both experimentally determined nuclear magnetic resonance (NMR) structures originating from structural genomics efforts. Despite their high sequence identity (96%), the folds of the two structures are markedly different. This urged us to perform in-depth analyses of both structure ensembles and the deposited experimental data, the results of which clearly identify one of the two models as largely incorrect. Next, we analyzed the quality of a large set of recent NMR-derived structure ensembles originating from both structural genomics projects and individual structure determination groups. Unfortunately, a visual inspection of structures exhibiting lower quality scores than DLC2A reveals that the seriously flawed DLC2A structure is not an isolated incident. Overall, our results illustrate that the quality of NMR structures cannot be reliably evaluated using only traditional experimental input data and overall quality indicators as a reference and clearly demonstrate the urgent need for a tight integration of more sophisticated structure validation tools in NMR structure determination projects. In contrast to common methodologies where structures are typically evaluated as a whole, such tools should preferentially operate on a per-residue basis.  相似文献   

16.
An efficient semi-automated strategy called PFBD (i.e. Protein Fold from Backbone Data only) has been presented for rapid backbone fold determination of small proteins. It makes use of NMR parameters involving backbone atoms only. These include chemical shifts, amide?Camide NOEs and H-bonds. The backbone chemical shifts are obtained in an automated manner from the orthogonal 2D projections of variants of HNN and HN(C)N experiments (Kumar et al., in Magn Reson Chem 50(5):357?C363, 2012) using AUTOBA (Borkar et al. in J Biomol NMR 50(3):285?C297, 2011); backbone H-bonds are manually derived from constant time long-range 2D-HnCO spectrum (Cordier and Grzesiek in J Am Chem Soc 121:1601?C1602, 1999); and amide?Camide NOEs are derived from 3D HNCO NOESY experiment which provides NOEs along the direct 1H dimension that has maximum resolution (Lohr and Ruterjans in J Biomol NMR 9(1):371?C388, 1997). All the experiments needed for the execution of PFBD can be recorded and analyzed in about 24?C48?h depending upon the concentration of the protein and dispersion of amide cross-peaks in the 1H?C15N correlation spectrum. Thus, we believe that the strategy, because of its speed and simplicity will be very valuable in Biomolecular NMR community for high-throughput structural proteomics of small folded proteins of MW?<?10?C12?kDa, the regime where NMR is generally preferred over X-ray crystallography. The strategy has been validated and demonstrated here on two small globular proteins: human ubiquitin (76 aa) and chicken SH3 domain (62 aa).  相似文献   

17.
Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6?kDa), a deuterated microcrystalline protein (DsbA, 21?kDa), a membrane protein (DsbB, 20?kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (??-synuclein, 14?kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100?% amide proton), fast magic-angle spinning conditions (40?kHz) and moderate proton decoupling power levels. Each H?CN pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.  相似文献   

18.
《Nucleic acids research》2020,48(22):12415
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and the 3′-untranslated region (3′-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.  相似文献   

19.
A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.  相似文献   

20.
Cell membranes provide an environment that is essential to the functions of membrane proteins. Cell membranes are mainly composed of proteins and highly diverse phospholipids. The influence of diverse lipid compositions of native cell membranes on the dynamics of the embedded membrane proteins has not been examined. Here we employ solid-state NMR to investigate the dynamics of E. coli Aquaporin Z (AqpZ) in its native inner cell membranes, and reveal the influence of diverse lipid compositions on the dynamics of AqpZ by comparing it in native cell membranes to that in POPC/POPG bilayers. We demonstrate that the dynamic rigidity of AqpZ generally conserves in both native cell membranes and POPC/POPG bilayers, due to its tightly packed tetrameric structure. In the gel and the liquid crystal phases of lipids, our experimental results show that AqpZ is more dynamic in native cell membranes than that in POPC/POPG bilayers. In addition, we observe that phase transitions of lipids in native membranes are less sensitive to temperature variations compared with that in POPC/POPG bilayers, which results in that the dynamics of AqpZ is less affected by the phase transitions of lipids in native cell membranes than that in POPC/POPG bilayers. This study provides new insights into the dynamics of membrane proteins in native cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号