首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
毛细管电泳-质谱(CE-MS)联用技术兼具毛细管电泳高效分离能力与质谱高灵敏检测、高真度定性的优势,已成为物质分离分析研究的一种非常重要的工具。本文对近几年来 CE-MS 联用的关键技术及 CE-MS 在中药分析、环境检测等领域的一些应用进展进行综述,对其发展进行了展望。  相似文献   

2.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.  相似文献   

3.
生物质谱技术在蛋白质组学研究中的应用   总被引:2,自引:0,他引:2  
随着技术的进步,蛋白质组学的研究重心由最初旨在鉴定细胞或组织内基因组所表达的全部蛋白质转移到从整个蛋白质组水平上阐述包括蛋白翻译后修饰、生物大分子相互作用等反映蛋白质功能的层次。多种质谱离子化技术的突破使质谱技术成为蛋白质组学研究必不可少的手段。质谱技术联合蛋白质组学多角度、深层次探索生命系统分子本质成为现阶段生命科学研究领域的主旋律之一。本文简要综述了肽和蛋白质等生物大分子质谱分析的原理、方式和应用,并对其发展前景做出展望。  相似文献   

4.
Beer I  Barnea E  Ziv T  Admon A 《Proteomics》2004,4(4):950-960
Tandem mass spectrometry (MS/MS), coupled with liquid chromatography (LC), is a powerful tool for the analysis and comparison of complex protein and peptide mixtures. However, the extremely large amounts of data that result from the process are very complex and difficult to analyze. We show how the clustering of similar spectra from multiple LC-MS/MS runs can help in data management and improve the analysis of complex peptide mixtures. The major effect of spectrum clustering is the reduction of the huge amounts of data to a manageable size. As a result, analysis time is shorter and more data can be stored for further analysis. Furthermore, spectrum quality improvement allows the identification of more peptides with greater confidence, the comparison of complex peptide mixtures is facilitated, and the entire proteomics project is presented in concise form. Pep-Miner is an advanced software tool that implements these clustering-based applications. It proved useful in several comparative proteomics projects involving lung cancer cells and various other cell types. In one of these projects, Pep-Miner reduced 517 000 spectra to 20 900 clusters and identified 2518 peptides derived from 830 proteins. Clustering and identification lasted less than two hours on an IBM Thinkpad T23 computer (laptop). Pep-Miner's unique properties make it a very useful tool for large-scale shotgun proteomics projects.  相似文献   

5.
A capillary electrophoretic method (CE) for characterizing PEGylated human parathyroid hormone 1-34 (PTH) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is described. CE was used to optimize the PEGylation of PTH through control of the reaction pH and the molar ratio of reactants with the advantages of minimal sample consumption and high separation capacity. The mono-PEGylated PTH (mono-PEG-PTH) was isolated and then digested with endoproteinase Lys-C. Resistance to Lys-C digestion on the PEGylation sites in the mono-PEG-PTH resulted in patterns of CE electropherograms different from that of the native PTH, and the PEGylation sites were assigned accordingly. The extent of positional isomers present in the mono-PEG-PTH was also determined by quantifying PEGylated fragments in the same CE electropherogram. In conclusion, the CE analysis of the Lys-C-digested sample allowed for simultaneous analysis of the PEGylation site and the extent of positional isomers in the mono-PEG-PTH. The results were confirmed by MALDI-TOF MS. This method will be applicable for characterizing PEGylation of other therapeutic peptides.  相似文献   

6.
Capillary electrophoresis (CE) is a high-resolution separation technique that has been widely used for trace analysis in biological samples. On-line capillary electrophoresis-electrospray mass spectrometry (CE-MS) was developed for the analysis of lipopolysaccharide (LPS) glycoforms from the gram-negative bacteria, Haemophilus influenzae. In this paper, we report on the application of CE-MS to characterize structural differences in O-deacylated LPS samples from H. influenzae strains Rd 11.7 and 375.1. The resolution capability of on-line CE-MS was first demonstrated by analysis of a complex LPS mixture from H. influenzae strain Rd 11.7. This strain contains a mixture of isomeric glycoforms differing in the number and positions of hexose moieties. Sialic acid containing glycoforms were also determined. Structural features of LPS from a lic1 mutant of H. influenzae strain 375 (375.1) were studied using on-line CE-MS/MS. With the separation provided by CE, two isomeric glycoforms differing in the location of phosphoethanolamine substituents were characterized by tandem mass spectrometry.  相似文献   

7.
Proteomics, an interface of rapidly evolving advances in physics and biology, is rapidly developing and expanding its potential applications to molecular and cellular biology. Application of proteomics tools has contributed towards identification of relevant protein biomarkers that can potentially change the strategies for early diagnosis and treatment of several diseases. The emergence of powerful mass spectrometry-based proteomics technique has added a new dimension to the field of medical research in liver, heart diseases and certain forms of cancer. Most proteomics tools are also being used to study physiological and pathological events related to reproductive biology. There have been attempts to generate the proteomes of testes, sperm, seminal fluid, epididymis, oocyte, and endometrium from reproductive disease patients. Here, we have reviewed proteomics based investigations in humans over the last decade, which focus on delineating the mechanism underlying various reproductive events such as spermatogenesis, oogenesis, endometriosis, polycystic ovary syndrome, embryo development. The challenge is to harness new technologies like 2-DE, DIGE, MALDI-MS, SELDI-MS, MUDPIT, LC–MS etc., to a greater extent to develop widely applicable clinical tools in understanding molecular aspects of reproduction both in health and disease.  相似文献   

8.
Proteomics has rapidly become an important tool for life science research, allowing the integrated analysis of global protein expression from a single experiment. To accommodate the complexity and dynamic nature of any proteome, researchers must use a combination of disparate protein biochemistry techniques, often a highly involved and time-consuming process. Whilst highly sophisticated, individual technologies for each step in studying a proteome are available, true high-throughput proteomics that provides a high degree of reproducibility and sensitivity has been difficult to achieve. The development of high-throughput proteomic platforms, encompassing all aspects of proteome analysis and integrated with genomics and bioinformatics technology, therefore represents a crucial step for the advancement of proteomics research. ProteomIQ? (Proteome Systems) is the first fully integrated, start-to-finish proteomics platform to enter the market. Sample preparation and tracking, centralized data acquisition and instrument control, and direct interfacing with genomics and bioinformatics databases are combined into a single suite of integrated hardware and software tools, facilitating high reproducibility and rapid turnaround times. This review will highlight some features of ProteomIQ, with particular emphasis on the analysis of proteins separated by 2D polyacrylamide gel electrophoresis.  相似文献   

9.
With the increasing use of capillary electrophoresis (CE) in the biotechnology industry, there is a demand for analytical tools and methodology that can be used to characterize CE profiles. This article describes the implementation and optimization of a robust online CE-mass spectrometry (CE-MS) system used for the characterization of several CE assays developed at Genentech Inc. These assays include CE as a complement to reverse-phase peptide mapping for the identification of small peptides eluting in the void volume, profiling N-linked glycopeptide heterogeneity, and determining O-linked site occupancy. In addition, CE-MS was used to confirm major 8-aminopyrene-1,3,6-trisulfonate (APTS)-labeled glycans released from recombinant antibodies that are routinely profiled by CE-laser-induced fluorescence (CE-LIF). For each study, CE-MS was able to successfully identify components seen in UV or LIF electropherograms, thereby expanding the capability of CE and CE-MS for profiling biomolecules.  相似文献   

10.
Following the completion of genome sequen-cing of model plants,such as rice (Oryza sativa L.) and Arabidopsis thaliana,the era of functional plant genomics has arrived which provides a solid basis for the develop-ment of plant proteomics.We review the background and concepts of proteomics,as well as the key techniques which include:(1) separation techniques such as 2-DE (two-dimensional electrophoresis),RP-HPLC (reverse phase high performance liquid chromatography) and SELDI (surface enhanced laser desorption/ionization) protein chip; (2) mass spectrometry such as MALDI-TOF-MS (matrix assisted laser desorption/ionization-time of flight- mass spectrometry) and ESI-MS/MS (elec-trospray ionization mass spectrometry/mass spectro-metry); (3) Peptide sequence tags; (4) databases related to proteomics; (5) quantitative proteome; (6) TAP (tandem affinity purification) and (7) yeast two-hybrid system.In addition,the challenges and prospects of pro-teomics are also discussed.  相似文献   

11.
快速发展的亚细胞蛋白质组学   总被引:3,自引:1,他引:3  
亚细胞蛋白质组是蛋白质组学领域中的一支新生力量 ,已成为蛋白质组学新的主流方向 ,通过多种策略和技术方法 ,一些重要的亚细胞结构的蛋白质组不断的得到分析 ,到目前为止 ,几乎所有亚细胞结构的蛋白质组学研究都有报道 ,而且已经深入到亚细胞器和复合体水平 ;另外 ,不仅局限于对亚细胞结构的蛋白组成进行简单分析 ,而且更注重功能性分析 ,将定量技术和差异分析引入亚细胞蛋白质组学 ,来观察此亚细胞结构的蛋白质组在某些生理或病理条件下的变化 ,这已经成为亚细胞蛋白质组学新的发展方向 .亚细胞蛋白质组学最大的困难在于怎样确认鉴定出来蛋白质的定位 ,是在提取过程中的污染还是真正在此亚细胞结构中有定位 ?这将是亚细胞蛋白质组学需要努力解决的挑战 .文章全面介绍了亚细胞蛋白质组学的最新研究进展 ,阐述了亚细胞蛋白质组学面临的挑战 ,并对亚细胞蛋白质组学的发展方向作了展望 .  相似文献   

12.
Posttranslational regulation of proteins via protein phosphorylation is one of the major means of protein regulation. Phosphorylation is a very rapid and reversible method of changing the function of proteins. Detection of phosphorylated proteins and the identification of phosphorylation sites are necessary to molecularly link specific phosphorylated events with change in phosphoprotein function. Mass Spectrometry (MS) has become the methodology of choice for phosphosite identification. Here we review current approaches including sample separation and enrichment techniques (SDS-PAGE, immunoprecipitation, metal-assisted enrichment, strong cation exchange, dendrimer capture), quantitative MS analysis methods (SILAC, iTRAQ, AQUA), and the application of recently developed methods including electron transfer dissociation ionization and “top-down” proteomics to phosphoprotein analysis.  相似文献   

13.
The analysis by HPLC, CE and CE-MS/MS of root bark extracts of a, so far undescribed, Central-African Ancistrocladus species (family Ancistrocladaceae) is described. Owing to the complexity of the extract, the application of reversed-phase HPLC resulted in a partially incomplete separation of the naphthylisoquinoline alkaloids, whilst CE using a non-aqueous buffer proved to be a very valuable complementary method for a first characterisation of the crude extract. By performing additional CE-MS/MS experiments, in combination with parallel isolation studies and structural elucidation using conventional methods, six alkaloidal substances present in the plant could be identified.  相似文献   

14.
植物蛋白质组学研究进展Ⅰ. 蛋白质组关键技术   总被引:10,自引:0,他引:10  
阮松林  马华升  王世恒  忻雅  钱丽华  童建新  赵杭苹  王杰 《遗传》2006,28(11):1472-1486
随着模式植物拟南芥和水稻基因组测序相继完成, 使植物基因组学研究成功迈入到功能基因组学研究的时代。这为蛋白质组学产生及其发展奠定了坚实的基础。文章重点介绍了蛋白质组学的概念、产生背景和蛋白质组学的关键技术。蛋白质组学的关键技术包括双向电泳、高效液相色谱、蛋白芯片、质谱技术、蛋白质组学的相关数据库、定量蛋白组技术、蛋白复合体标签亲和纯化技术和酵母双杂交系统。同时对当前蛋白质组技术面临的挑战和发展前景进行了讨论。  相似文献   

15.
Introduction: The last 20 years have seen significant improvements in the analytical capabilities of biological mass spectrometry (MS). Studies using advanced MS have resulted in new insights into cell biology and the etiology of diseases as well as its use in clinical applications.

Areas covered: This review discusses recent developments in MS-based technologies and their cancer-related applications with a focus on proteomics. It also discusses the issues around translating the research findings to the clinic and provides an outline of where the field is moving.

Expert commentary: Proteomics has been problematic to adapt for the clinical setting. However, MS-based techniques continue to demonstrate potential in novel clinical uses beyond classical cancer proteomics.  相似文献   


16.
In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC–ESI–MS/MS to comprehensively identify these peptides. However, there are many parameters for LC–ESI–MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC–ESI–MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC–ESI–MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC–ESI–MS/MS systems.  相似文献   

17.
Introduction: The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics.

Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD).

Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.  相似文献   


18.
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC–MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC–MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC–MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.  相似文献   

19.
An enormous amount of research effort has been devoted to biomarker discovery and validation. With the completion of the human genome, proteomics is now playing an increasing role in this search for new and better biomarkers. Here, what leads to successful biomarker development is reviewed and how these features may be applied in the context of proteomic biomarker research is considered. The “fit‐for‐purpose” approach to biomarker development suggests that untargeted proteomic approaches may be better suited for early stages of biomarker discovery, while targeted approaches are preferred for validation and implementation. A systematic screening of published biomarker articles using MS‐based proteomics reveals that while both targeted and untargeted technologies are used in proteomic biomarker development, most researchers do not combine these approaches. i) The reasons for this discrepancy, (ii) how proteomic technologies can overcome technical challenges that seem to limit their translation into the clinic, and (iii) how MS can improve, complement, or replace existing clinically important assays in the future are discussed.  相似文献   

20.
Cholesteryl ester (CE) and diacylglycerol (DAG) molecular species are important lipid storage and signaling molecules. Mass spectrometric analyses of these lipids are complicated by the presence of isobaric molecular ions shared by these lipid classes and by relatively poor electrospray ionization, which is a consequence of an inherently weak dipole moment in these lipid classes. The current study demonstrates that lithiated adducts of CE and DAG molecular ions have enhanced ionization and lipid class-specific fragmentation in tandem mass spectrometry (MS/MS) scan modes, thereby allowing the implementation of strategies capable of lipid class-specific detection. Using neutral loss (NL) mode for the loss of cholestane from cholesterol esters (NL 368.5) and specific selected reaction monitoring for DAG molecular species, the response of specific molecular species to that of internal standards was determined. CE and DAG molecular species were quantified in human coronary artery endothelial cells (HCAECs) incubated with both palmitic acid and oleic acid. Furthermore, NL 368.5 spectra revealed the oxidation of the aliphatic fatty acid residues of CE molecular species. Taken together, these studies demonstrate a new analytical approach to assessing CE and DAG molecular species that exploits the utility of lithiated adducts in conjunction with MS/MS approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号