首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cu/Zn Superoxide dismutase (SOD) was quantified by enzyme immunoassay for prenatal diagnosis of Down's syndrome. Overall, 154 samples of amniotic fluid, 72 samples of amniotic cells and 31 samples of chorionic tissue were investigated. Due to the large biological variance of the SOD concentrations in normal pregnancies (range for amniotic fluid 10.5–154.9, for amniotic cells 40.0–338.8, and for chorionic tissue 132.2–649.5 g SOD/g protein) the cases of Down's syndrome detected by karyotype analysis were not reliably identified by Cu/Zn SOD quantification. As in erythrocytes obtained from patients with Down's syndrome, a trisomy 21 was easily and accurately detected in the erythrocytes from very small quantities (about 50 l) of umbilical blood. The SOD concentrations in normal cases (n = 40) varied between 11.4 and 17.3 and in the cases of trisomy 21, as confirmed by karyotyping (n = 4), between 22.5 and 23.2ng/one million cells. SOD quantification in fetal erythrocyte is a helpful additional method in prenatal Down syndrome diagnosis under certain conditions, which are discussed.  相似文献   

2.
Maternal cell contamination in amniotic fluid samples is easily detected by in situ hybridization if the karyotype of the fetus differs from the karyotype of the mother. One out of two amniotic fluid samples appears to contain more than 20% maternal cells. Bloody samples often contain even more than 50% maternal cells. Maternal cells can also be identified on the basis of their nuclear morphology. Maternal cell contamination is regularly observed in pregnancies with an anterior placenta, whereas it is rare in posterior placenta pregnancies. The maternal cells are therefore thought to be artificially introduced into the amniotic fluid sample, as a result of placental bleeding during amniocentesis. The implications of maternal cell contamination for prenatal diagnosis using uncultured amniotic fluid samples are discussed.  相似文献   

3.
Pallister-Killian syndrome (PKS) is a rare sporadic genetic disorder usually caused by mosaicism of an extra isochromosome of 12p (i(12p)). This retrospective study analysed the prenatal ultrasound manifestations and molecular and cytogenetic results of five PKS foetuses. Samples of amniotic fluid and/or cord blood, skin biopsy and placenta were collected. Conventional karyotyping and single nucleotide polymorphism array (SNP array) were performed on all the amniotic fluid or cord blood samples. Copy number variants sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were also used for the validation for one foetus. All the five foetuses were from pregnancies with advanced parental age. Two foetuses involved structural abnormalities and one foetus had only soft markers, all of which included increased nuchal translucency. The rest two foetuses had normal ultrasounds in the second trimester, which has rarely been reported before. The karyotype revealed typical i(12p) in four cases and a small supernumerary marker chromosome consisting of 12p and 20p in the remaining one case. The proportion of cells with i(12p) ranged from 0 to 100% in cultural cells, while SNP array results suggested 2−4 copies of 12p. For one foetus, metaphase FISH showed normal results, but the interphase FISH suggested cell lines with two, three and four copies of 12p in the amniotic fluid. Advanced parental age may be an important risk factor for PKS, and there were no typical ultrasound manifestations related to PKS. A combination of karyotype analysis and molecular diagnosis is an effective method for the diagnosis of PKS.  相似文献   

4.
Down syndrome (DS) is one of the most common chromosomal abnormalities affecting about 1 of every 700 fetuses. Current screening strategies have detection rates of 90-95% at a 5% false positive rate. The aim of this study was to discover new biomarkers of DS in amniotic fluid by using a multiplex selected reaction monitoring assay. Nine proteins were analyzed: CEL, CPA1, MUC13, CLCA1, MUC5AC, PLUNC, and HAPLN1, and CGB as positive control and serotransferrin as negative control. One proteotypic peptide for each protein was selected, and internal heavy isotope-labeled peptide standards were spiked into the samples. Fifty-four samples from pregnant women carrying normal (n = 37) or DS-affected (n = 17) fetuses were analyzed. The median protein concentrations for DS and normal samples, respectively, were as follows: 20 and 49 ng/mL (p < 0.01) for CEL; 3.7 and 14 ng/mL (p < 0.001) for CPA1; 80 and 263 ng/mL (p < 0.001) for MUC13; 46 and 135 ng/mL (p < 0.001) for CLCA1; 0.65 and 0.93 μg/mL (p < 0.05) for MUC5AC; 61 and 73 ng/mL (p > 0.05) for PLUNC; 144 and 86 ng/mL (p < 0.01) for HAPLN1; 0.89 and 0.54 μg/mL (p = 0.05) for CGB; 91 and 87 μg/mL (p > 0.05) for serotransferrin. Statistically significant differences were found in six out of the seven candidate proteins analyzed, reflecting a different regulation in DS.  相似文献   

5.
Summary Hexosaminidase (Hex) A, B, and C/S were electrophoretically separated from cultured amniotic fluid cells, fetal brain, and white blood cells. Photographs of cellulose acetate zymograms were evaluated by reflectometric scanning. The usefulness and limitations of this rapid method were shown. Hex A was completely absent in the amniotic fluid cells of one out of three pregnancies at risk for Tay-Sachs disease, but Hex C/S was present in this case. The prenatal diagnosis of Tay-Sachs disease was made, and confirmed with the fetal material after abortion. Hex C/S was distinguishable from a residual or heterozygous Hex A activity. In the two other risk pregnancies, reflectometric Hex A activities were found to be 50 and 34% of control; the heterozygous stage was presumed for the fetuses.  相似文献   

6.
Klinefelter syndrome is a sex chromosomal abnormality (47, XXY karyotype), occurring approximately in 1 in 1000 male live births. In the present study proteomic analysis was performed in twelve 2nd trimester amniotic fluid samples, eight coming from pregnancies with normal males and four with Klinefelter syndrome foetuses, as shown by routine prenatal cytogenetic analysis. Samples were analysed by 2-DE, coupled with MALDI-TOF-MS analysis. Three proteins (Ceruloplasmin, Alpha-1-antitrypsin and Zinc-alpha-2-glycoprotein) were found to be up-regulated in samples obtained from pregnancies with Klinefelter syndrome foetuses, whereas four proteins (Apolipoprotein A-I, Plasma retinol-binding protein, Gelsolin, and Vitamin D-binding protein) were down regulated when compared to proteins detected in samples from normal foetuses. The differential expression of Ceruloplasmin, Apolipoprotein A-I and Plasma retinol-binding protein was further confirmed by immunoblotting. Since these proteins are likely to cross the placenta barrier and be detected in maternal plasma they could be used as biomarkers for the non-invasive prenatal diagnosis of Klinefelter syndrome.  相似文献   

7.
Summary Activities of the microvillar enzymes -glutamyl-transpeptidase (GGTP), aminopeptidase M (APM), phosphodiesterase and maltase have been examined in second-trimester amniotic fluid as possible aids to the early prenatal diagnosis of cystic fibrosis (CF). The two peptidases, GGTP and APM, gave best results. If the fifth percentile of the normal range is used as an action line, the sensitivity of a positive test (low GGTP value) is 78% and the predictability 84%. At the tenth percentile the sensitivity is 100% and the predictability 77%. These approximate figures apply only to pregnancies where there has been a previous affected child. Until the primary protein defect in CF is discovered, this may prove an acceptable form of prenatal diagnosis to the high-risk mother.  相似文献   

8.
Routine cytogenetic analysis of an amniotic fluid sample revealed a large brightly fluorescent region in the short arm of chromosome 14 in an otherwise normal male karyotype (46,XY,14p+ + +). This site was also present in the paternal karyotype. In situ hybridisation to a Y-chromosome-specific DNA probe confirmed that the father had a Y/14 translocation. The incidence of two hybridisation bodies (large hybridisation sites), detecting both the translocated Y chromatin and the normal Y chromosome, was lower in interphase nuclei (44.3%) than in metaphase spreads (95.2%). The relevance of these observations to the potential use of in situ hybridisation to interphase nuclei for prenatal diagnosis is discussed.  相似文献   

9.
Proteomic analysis is widely used for the detection of diagnostic markers. In the present study amniotic fluid supernatants (AFS) from pregnancies with Down syndrome (DS) fetuses and from chromosomally normal fetuses in the 17th week of gestation were analyzed by 2-DE. Gel comparison revealed significant differences in the two groups. Spots with different expression levels were excised and proteins were identified by MALDI-MS and nano-ESI-MS/MS. Splicing factor arginine/serine-rich 4 (SFRS4; Q08170) was present only in AFS from DS fetuses and completely absent in the control group. Quantitative differences were detected for alpha-1-microglobulin (AMBP; P02760), collagen alpha 1 (I) chain (CO1A1; P02452), collagen alpha 1 (III) chain (CO3A1; P02461), collagen alpha 1 (V) chain d (CO5A1; P20908), and basement membrane-specific heparin sulfate proteoglycan core protein (PGBM; P98160). These proteins were increased in cases with DS, whereas protein IBP-1 (P08833) was decreased by 40% compared with chromosomally normal fetuses. Four proteins, CO1A1, CO3A1, CO5A1, and PGBM, appeared as fragments. As differentially expressed proteins were present in all pregnancies with DS tested, they may represent useful potential markers for prenatal diagnosis. However, for protein biomarkers to be of any clinical utility, systematic analysis of the maternal serum should be conducted.  相似文献   

10.
In the first child of this family, the diagnosis of male pseudo-hermaphroditism due to 17 keto-reductase deficiency was established at two months of age after HCG test. During the second pregnancy, amniocentesis was performed for fetal karyotype and steroid determination in the amniotic fluid: an affected male fetus was suspected and this prediction was confirmed at birth. For the third pregnancy, a prenatal diagnosis was requested again and made, according to the same procedure: a normal male fetus was predicted and this diagnosis was confirmed at birth; this study demonstrates the feasibility and reliability of a prenatal diagnosis for 17 keto-reductase deficiency.  相似文献   

11.
S100B is an astrocytic protein assessed in cerebrospinal fluid and serum as a biochemical marker of cerebral injuries. However, increasing evidences suggest the influence of extra cerebral sources on its serum levels. Since it was reported that the injured myocardium expresses S100B, we investigated whether the isolated heart releases this protein. The rat hearts were excised and perfused by the Langendorff technique of isolated heart perfusion. After stabilization, 10 hearts (ischemic group) were submitted to 20 minutes of ischemia and 30 minutes of reperfusion, and 5 hearts (control group) were submitted to 50 minutes of perfusion. The perfusion fluid was collected at pre-ischemia, and 0, 5, 10, 15 and 30 min after ischemia (or equivalent in controls) for S100B and cardiac troponin T (a heart injury marker) assays. In the ischemic group, S100B and troponin T levels increased significantly at time 0 min: S100B values [mug/L, median (IQ25/IQ75)] increased from < or = 0.02 (< or = 0.02/0.03) to 0.38 (0.22/0.84), while troponin T values [mug/L, median (IQ25/IQ75)] increased from 0.31 (0.15/0.45) to 2.84 (2.00/3.63). Our results point to the ischemic heart as an extra cerebral source of S100B.  相似文献   

12.
Kleijer  W. J.  Huijmans  J. G. M.  Blom  W.  Gorska  D.  Kubalska  J.  Walasek  M.  Zaremba  J. 《Human genetics》1984,66(4):287-288
Summary The prenatal diagnosis of a fetus affected with Sanfilippo disease type B is described. The deficiency of -N-acetylglucosaminidase in the cultured amniotic fluid cells was shown by a microassay enabling early prenatal diagnosis. In addition an increased level of heparan sulphate was demonstrated in the amniotic fluid by two-dimensional electrophoresis of glycosaminoglycans. The latter result confirmed the value of this test as an adjunctive method in the prenatal diagnosis. The pregnancy was terminated and the prenatal diagnosis was confirmed by enzyme analysis of cultured fetal fibroblasts and fetal liver.  相似文献   

13.
Treatment with the progestin altrenogest is widely used in pregnant mares. The fact that foals born from healthy mares treated with altrenogest until term suffered from neonatal problems raises the question of direct effects of altrenogest on vital functions in the neonate. We have therefore investigated altrenogest concentrations in maternal and neonatal blood plasma and in fetal fluids. Pregnant mares were treated with altrenogest orally once daily (0,088 mg/kg bodyweight, n = 7) or left untreated (n = 8) from 280 d of gestation until foaling. Altrenogest concentration was determined in plasma of the mares, their foals and in amniotic and allantoic fluid. The concentration of altrenogest in plasma from treated mares (2.6 ± 1.0 ng/mL) was significantly lower than in plasma from their foals immediately after birth (5.6 ± 1.9 ng/mL; p < 0.05), but was significantly higher than in their fetal fluids (amniotic fluid: 0.4 ± 0.1 ng/mL; p < 0.05; allantoic fluid: 3.0 ± 1.5 ng/mL). Altrenogest was undetectable in maternal and fetal plasma and fetal fluids of control pregnancies at all times. Altrenogest concentration in plasma of foals from treated mares was strongly correlated to the altrenogest concentration in plasma of their dams (r = 0.938, p < 0.001) and in amniotic (r = 0.886, p < 0.001) and allantoic fluid (r = 0.562, p < 0.05). A significant decrease in altrenogest concentration between the time periods 0-15 min, 30-120 min, and 180-360 min after parturition was seen in the plasma from foals born to altrenogest-treated mares. In conclusion, our data demonstrate that altrenogest reaches the equine fetus at high concentrations.  相似文献   

14.
本文在羊水胆碱酯酶凝胶圆盘电泳中,改用亚铁氰化铜的棕色显带沉淀反应,使显带比原法清晰,温培时间由12小时以上缩短为3小时。测定了210例正常的和19例神经管缺损畸胎的妊娠羊水,其阴性和阳性期望率分别达97.1%和100%。  相似文献   

15.
Prenatal diagnosis for the lysosomal storage disorders is typically achieved by enzymatic analysis of the relevant lysosomal enzyme in cultured amniocytes or chorionic villi. While prenatal diagnosis of some genetic diseases can be done by analysis of pertinent metabolites in amniotic fluid, there are few data regarding prenatal diagnosis of lysosomal disorders by enzyme analysis of amniotic fluid. Prenatal diagnosis by enzyme analysis of amniotic fluid has the potential advantage of providing a more rapid prenatal test result. In this study we describe an assay for the prenatal diagnosis of the mucopolysaccharidosis beta-glucuronidase deficiency (MPS VII; MIM #253220) using amniotic fluid and we confirm its reliability in detecting an affected fetus in an at-risk pregnancy by enzyme analysis of cultured amniocytes and fetal fibroblasts. Because MPS VII is rare and few instances of prenatal diagnosis for this and nearly all other lysosomal disorders have been accomplished by enzyme analysis of amniotic fluid, confirmation of results obtained from enzyme analysis of amniotic fluid should be carried out by enzyme or mutation analysis using cultured amniocytes or chorionic villus specimens.  相似文献   

16.
This report has considered three approaches to the prenatal diagnosis of the severe, early onset form of hypophosphatasia. Two of these approaches, ultrasonography and the determination of the bone/liver isozymes of alkaline phosphatase (ALP) in cultured amniotic fluid cells, have proven useful diagnostically. The third method, assay of the bone/liver isozyme activity or total activity in supernatant amniotic fluid, was not informative for the affected fetus we studies. Failure to visualize a well-defined fetal skull after 16 weeks of pregnancy when the level of alpha-fetoprotein in the amniotic fluid is normal should arouse the suspicion of hypophosphatasia. Because the disease is known to manifest clinical variabiltiy, studies to detect both the biochemical defect as well as the structural manifestations should be considered. The combined use of ultrasonography, analysis of amniotic fluid alpha-fetoprotein, and the measurement of the bone/liver ALP in cultured amniotic fluid cells would appear to be the best approach to the prenatal diagnosis.  相似文献   

17.
Study of 108 samples of amniotic fluid obtained between 28 and 42 weeks'' gestation from 101 patients revealed that in normal pregnancies the creatinine concentration, lecithin/sphingomyelin (L/S) ratio and percentage of fat cells correlated better with the gestational age of the newborn--assessed by clinical criteria--than did the bilirubin and sodium concentrations. A creatinine concentration of 1.75 mg/dL or more, an L/S ratio of 4 or more and a fat cell percentage of 10 or more correlated significantly with a gestational age of 37 weeks or more. In abnormal pregnancies (those with obstetric or medical complications, or both) the mean creatinine concentration in the amniotic fluid was significantly less than expected for gestational age in fetal dysmaturity and greater than expected when the mother had diabetes. The mean L/S ratio in the amniotic fluid was elevated when the mother had hypertension or smoked and in cases of fetal dysmaturity or long interval between rupture of the membranes and delivery, whereas it was significantly lower than normal when the mother had diabetes. The mean bilirubin concentration in the amniotic fluid was significantly lower than normal when the mother had hypertension. When the mother had diabetes, maturity of the fetal lung, liver, skin and brain appeared to be delayed, according to the values for the amniotic fluid constituents.  相似文献   

18.
We have monitored two successive pregnancies in a family which we found to be at risk for argininosuccinic aciduria. We measured argininosuccinic acid (ASA) concentrations in amniotic fluid and utilized an indirect assay of ASA lyase activity in cultured amniotic fluid cells. The assay procedure is based on the uptake of 14C from [14C]citrulline and of [3H]leucine into protein. ASA was easily measured in amniotic fluid from the first fetus at risk, whereas none was detectable in control fluids. Amniotic fluid cells cultured from this fetus had only 5.5% of control ASA lyase activity. The pregnancy was terminated, and hepatic ASA lyase activity in the fetus was shown to be about 1.3% of control values. In addition, eight fetal tissues were analyzed for ASA, and all had significant accumulation. ASA was not detected in amniotic fluid from the second fetus at risk, and ASA lyase activity in cultured cells was 80% of control activity. Enzymatic analysis of erythrocyte lysate confirmed the diagnosis of an unaffected child (ASA lyase = 46% of control) and indicated heterozygosity. Thus, we provide further evidence that argininosuccinic aciduria can be diagnosed successfully in utero by indirect assay of ASA lyase activity in cultured amniotic fluid cells. In addition, high amniotic fluid ASA concentrations provide strong adjunctive evidence for such a prenatal determination, and may prove to be sufficient for diagnosis.  相似文献   

19.
Cryopreservation of mesenchymal stem cells from amniotic fluid is of clinical importance, as these cells can be harvested during the prenatal period and stored for use in treatments. We examined the behavior of mesenchymal stem cells from human amniotic fluid in culture that had been subjected to cryopreservation. We assessed chromosomal stability through karyotype analysis, determined whether multipotent capacity (differentiation into adipogenic, chondrogenic, and osteogenic cells) is maintained, and analyzed SOX2 and NANOG expression after thawing. Five amniotic fluid samples were cryopreserved for 150 days. No chromosomal aberrations were observed. The expression levels of NANOG and SOX2 also were quite similar before and after cryopreservation. Capacity for differentiation into adipogenic, chondrogenic, and osteogenic tissues also remained the same. We conclude that cryopreservation of amniotic fluid does not alter karyotype, NANOG/SOX2 gene expression, or multipotent capacity of stem cells that have been collected from amniotic fluid during pregnancy.  相似文献   

20.
Isoprostanes are markers of free radical-catalyzed lipid peroxidation. Evidence suggests that oxidative stress occurs in pregnancies with fetal growth restriction (FGR). The aim of this study was to analyze F2-isoprostanes in amniotic fluid of FGR pregnancies. We tested the hypothesis that F2-isoprostanes are reliable markers to distinguish FGR pregnancies from normal ones and appropriate-for-gestational-age (AGA) from small-for-gestational-age (SGA) newborns. F2-isoprostanes levels were measured by colorimetric enzyme immunoassay in the amniotic fluid of 77 pregnancies with normal fetal growth (group I) and 37 with FGR (group II). Fetal biometry and Doppler measurements were obtained using an ATL HDI 3000 ultrasound system. Isoprostanes were higher in group II than group I. The ROC curve distinguished group I from group II, showing 100% sensitivity and 88.3% specificity at a cutoff of 94 pg/ml. There were no statistical differences in isoprostanes levels between AGA and SGA newborns in group II. The area under the ROC curve drawn to distinguish AGA and SGA newborns showed a sensitivity of 100% and a specificity of 72.3% at a cutoff of 94 pg/ml. The relative risk index indicated a 8.05 times higher risk of birth weight below the 3rd percentiles in group II than in group I. High isoprostanes concentrations can be detected in the amniotic fluid of FGR pregnancies and the assay of isoprostanes in amniotic fluid is a reliable assessment of fetal oxidative stress. Common use of this predictive marker in obstetrics will improve the ability of clinicians to identify those fetuses who will be born SGA or with a birth weight below the 25th percentile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号