首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we generated a systematic overview of the expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Using indirect immunofluorescence microscopy, we analyzed the spatial and temporal distribution of 11 important membrane and membrane-associated synaptic proteins (syntaxin 1/3, SNAP-25, synaptobrevin 2, synaptogyrin, synaptotagmin I, SV2A, SV2B, Rab3A, clathrin light chains, CSP and neuroligin I) during synaptogenesis. The temporospatial distribution of these synaptic proteins was "normalized" by the simultaneous visualization of the synaptic vesicle protein synaptophysin, which served as an internal reference protein. We found that expression of various synaptic membrane proteins started at different time points and changed progressively during development. At early stages of development synaptic vesicle membrane proteins at extrasynaptic locations did not always colocalize with synaptophysin, indicating that these proteins probably do not reside in the same transport vesicles. Despite a non-synchronized onset of protein expression, clustering and colocalization of all synaptic membrane proteins at ribbon synapses roughly occurred in the same time window (between day 4 after birth, P4, and P5). Thus, the basic synaptic membrane machinery is already present in ribbon synapses before the well-known complete morphological maturation of ribbon synapses between P7 and P12. We conclude that ribbon synapse formation is a multistep process in which the concerted recruitment of synaptic membrane proteins is a relatively early event and clearly not the final step.  相似文献   

2.
Changes in synaptic efficacies need to be long-lasting in order to serve as a substrate for memory. Experimentally, synaptic plasticity exhibits phases covering the induction of long-term potentiation and depression (LTP/LTD) during the early phase of synaptic plasticity, the setting of synaptic tags, a trigger process for protein synthesis, and a slow transition leading to synaptic consolidation during the late phase of synaptic plasticity. We present a mathematical model that describes these different phases of synaptic plasticity. The model explains a large body of experimental data on synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, the model accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation frequency. The stabilization of potentiated synapses during the transition from early to late LTP occurs by protein synthesis dynamics that are shared by groups of synapses. The functional consequence of this shared process is that previously stabilized patterns of strong or weak synapses onto the same postsynaptic neuron are well protected against later changes induced by LTP/LTD protocols at individual synapses.  相似文献   

3.

Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer’s disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.

  相似文献   

4.
5.
B Lu  P Greengard  M M Poo 《Neuron》1992,8(3):521-529
We have investigated the possible role of synapsin I, a nerve terminal-specific protein, in the maturation of neuromuscular synapses in Xenopus cell cultures. Purified synapsin I was loaded into embryonic spinal neurons by injection of the protein into one of the early blastomeres of a Xenopus embryo. At synapses made by synapsin I-loaded neurons, spontaneous synaptic currents occurred with higher frequency and amplitude, and the amplitude exhibited an earlier appearance of a bell-shaped distribution. These characteristics are indicative of more mature quantal secretion. Impulse-evoked synaptic currents also showed a significant increase in amplitude. Using cell manipulation techniques, enhanced transmitter release from synapsin I-loaded neurons was shown to occur at the onset of synaptogenesis, suggesting a presynaptic developmental action of synapsin I prior to synaptic contact. Taken together, these results suggest that endogenous synapsin I may participate in the functional maturation of synapses.  相似文献   

6.
Loeb  Jeffrey A. 《Brain Cell Biology》2003,32(5-8):649-664
Synaptic activity in the form of neurotransmitter release and postsynaptic depolarization is a prime motive force that guides synaptic development throughout the nervous system. The molecular basis of how synaptic activity is converted into structural changes that build and maintain synapses is a key question that has recently become focused on regulatory factors that act on tyrosine kinase receptors on both sides of the synaptic interface. The neuregulins are such a family of growth and differentiation factors that exist as both membrane-bound and soluble forms through alternatively splicing. Neuregulin functions to promote the local expression of acetylcholine receptors at neuromuscular synapses and therefore has the potential to strengthen specific synaptic connections. Recent evidence suggests that synaptic activity at the neuromuscular junction is coupled to presynaptic neuregulin release through an indirect mechanism acting through the postsynaptic expression of neurotrophic factors. At early stages of development, this could potentiate the stability of more active synapses. Later in development, heparin-binding forms of neuregulin accumulate to high levels in the synaptic basal lamina through the developmentally programmed expression of heparan sulfate proteoglycans, thus providing a sustained source of neuregulin to the most active synapses.  相似文献   

7.
In the mammalian cortex, the initial formation of synaptic connections is followed by a prolonged period during which synaptic circuits are functional, but retain an elevated capacity for activity-dependent remodeling and functional plasticity. During this period, synaptic terminals appear fully mature, morphologically and physiologically. We show here, however, that synaptic terminals during this period are distinguished by their simultaneous accumulation of multiple growth-associated proteins at levels characteristic of axonal growth cones, and proteins involved in synaptic transmitter release at levels characteristic of adult synapses. We show further that newly formed synapses undergo a switch in the dynamic S-palmitoylation of proteins early in the critical period, which includes a large and specific decrease in the palmitoylation of GAP-43 and other major substrates characteristic of growth cones. Previous studies have shown that a similar reduction in ongoing palmitoylation of growth cone proteins is sufficient to stop advancing axons in vitro, suggesting that a developmental switch in protein S-palmitoylation serves to disengage the molecular machinery for axon extension in the absence of local triggers for remodeling during the critical period. Only much later does a decline in the availability of major growth cone components mark the molecular maturation of cortical synapses at the close of the critical period.  相似文献   

8.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.  相似文献   

9.
Cadherin-mediated specific cell adhesion is an important process in brain development as well as in synaptic plasticity in the adult brain. In this study the authors quantified mRNA levels of N-cadherin and cadherin-11 in different brain regions for the first time. In hippocampus N-cadherin mRNA levels were very high at embryonic stages and decreased during further development, whereas cadherin-11 mRNA levels were highest at postnatal stages. However, N-cadherin protein level was not altered during hippocampal development and cadherin-11 protein was low at embryonic but high at postnatal and adult stages. In cultured hippocampal neurons both cadherins became colocalized and recruited to synaptic sites during ongoing differentiation, with especially high accumulation of cadherin-11 at synapses. These data hint at a critical role of N-cadherin at early embryonic stages and early synaptogenesis, whereas cadherin-11 might be more important for further stabilization of synapses in the postnatal period and adulthood.  相似文献   

10.
J Alder  Z P Xie  F Valtorta  P Greengard  M Poo 《Neuron》1992,9(4):759-768
The involvement of synaptophysin, a synaptic vesicle-specific protein, in transmitter release at neuromuscular synapses was studied by intracellular application of synaptophysin antibodies into presynaptic neurons. Polyclonal antibodies or their Fab fragments were loaded into spinal neurons by injection into one of the early blastomeres of Xenopus embryos 1 day prior to culturing or, alternatively, directly through a whole-cell recording pipette at the soma of cultured neurons. At synapses made by antibody-loaded neurons in culture, the spontaneous synaptic currents showed marked reduction in frequency without significant change in their mean amplitude. The impulse-evoked synaptic currents showed reduced amplitude and increased failure rate. These results suggest that interference with synaptophysin function by antibody binding inhibits transmitter secretion.  相似文献   

11.
The morphogenetic differentiation of synapses in the cerebellum and the optic tectum of darkand light- reared rainbow trout was investigated at critical stages of development. During normal differentiation the cerebellum is characterized by the appearance of 'indented', spinelike synapses. This type of synapses increases with age and prevails from day 60 on. At the same time the number of 'flat' synapses decreases. In the cerebellum the highest synaptic density (123 ± 12 synapses/1,000 μm2) is reached 30 days after hatching when the larvae begin to swim. The optic tectum is characterized by a preponderance of flat synapses in early postnatal and adult life; maximal synaptic density (66 ± 5 synapses/1,000 μm2) is reached 60 days after hatching when the larvae have reached optimal visual acuity.
Light deprivation causes a considerable and significant reduction in the number of synapses per unit area in the cerebellum and the optic tectum. The length of synaptic contacts do not change. If light-deprived, the density of synaptic vesicles decreases significantly in the optic tectum of a 25-day-old trout (74 ± 3 instead of 132 ± 7 vesicles/μm2). In the cerebellum this effect is absent.  相似文献   

12.
Perforated synapses and plasticity   总被引:1,自引:0,他引:1  
Against a background of existing models relating perforated synapses to synaptic plasticity, the numerical density and frequency of perforated synapses in rat neocortex have been assessed from 1 d to 22 mo of age using the disector procedure, and changes in their morphology were assessed using 3-D computer reconstructions. The data point toward perforated and nonperforated synapses being separate synaptic populations from early in development, and with perforated synapses playing a part in the maintenance of neuronal postsynaptic density surface area from mid-adulthood onwards. This suggests that they play a crucial role in synaptic plasticity, although its nature may be different from that postulated by most recent workers.  相似文献   

13.
N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses.  相似文献   

14.
Abstract

Cadherin-mediated specific cell adhesion is an important process in brain development as well as in synaptic plasticity in the adult brain. In this study the authors quantified mRNA levels of N-cadherin and cadherin-11 in different brain regions for the first time. In hippocampus N-cadherin mRNA levels were very high at embryonic stages and decreased during further development, whereas cadherin-11 mRNA levels were highest at postnatal stages. However, N-cadherin protein level was not altered during hippocampal development and cadherin-11 protein was low at embryonic but high at postnatal and adult stages. In cultured hippocampal neurons both cadherins became colocalized and recruited to synaptic sites during ongoing differentiation, with especially high accumulation of cadherin-11 at synapses. These data hint at a critical role of N-cadherin at early embryonic stages and early synaptogenesis, whereas cadherin-11 might be more important for further stabilization of synapses in the postnatal period and adulthood.  相似文献   

15.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein‐synthesis dependent long‐term facilitation (LTF) produced by 5‐HT that decays rapidly. Changes in expression of a SN‐specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5‐HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5‐HT was blocked by anisomycin or was reversed 48 h after 5‐HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long‐term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 275–286, 2003  相似文献   

16.
Elias GM  Funke L  Stein V  Grant SG  Bredt DS  Nicoll RA 《Neuron》2006,52(2):307-320
Trafficking of AMPA receptors (AMPA-Rs) to and from synapses controls the strength of excitatory synaptic transmission. However, proteins that cluster AMPA-Rs at synapses remain poorly understood. Here we show that PSD-95-like membrane-associated guanylate kinases (PSD-MAGUKs) mediate this synaptic targeting, and we uncover a remarkable functional redundancy within this protein family. By manipulating endogenous neuronal PSD-MAGUK levels, we find that both PSD-95 and PSD-93 independently mediate AMPA-R targeting at mature synapses. We also reveal unanticipated synapse heterogeneity as loss of either PSD-95 or PSD-93 silences largely nonoverlapping populations of excitatory synapses. In adult PSD-95 and PSD-93 double knockout animals, SAP-102 is upregulated and compensates for the loss of synaptic AMPA-Rs. At immature synapses, PSD-95 and PSD-93 play little role in synaptic AMPA-R clustering; instead, SAP-102 dominates. These studies establish a PSD-MAGUK-specific regulation of AMPA-R synaptic expression that establishes and maintains glutamatergic synaptic transmission in the mammalian central nervous system.  相似文献   

17.
In the mammalian cortex, the initial formation of synaptic connections is followed by a prolonged period during which synaptic circuits are functional, but retain an elevated capacity for activity‐dependent remodeling and functional plasticity. During this period, synaptic terminals appear fully mature, morphologically and physiologically. We show here, however, that synaptic terminals during this period are distinguished by their simultaneous accumulation of multiple growth‐associated proteins at levels characteristic of axonal growth cones, and proteins involved in synaptic transmitter release at levels characteristic of adult synapses. We show further that newly formed synapses undergo a switch in the dynamic S‐palmitoylation of proteins early in the critical period, which includes a large and specific decrease in the palmitoylation of GAP‐43 and other major substrates characteristic of growth cones. Previous studies have shown that a similar reduction in ongoing palmitoylation of growth cone proteins is sufficient to stop advancing axons in vitro, suggesting that a developmental switch in protein S‐palmitoylation serves to disengage the molecular machinery for axon extension in the absence of local triggers for remodeling during the critical period. Only much later does a decline in the availability of major growth cone components mark the molecular maturation of cortical synapses at the close of the critical period. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 423–437, 1999  相似文献   

18.
Synapsins are abundant nerve terminal proteins present at all synapses except for ribbon synapses, e.g. photoreceptor cell synapses. Multiple functions have been proposed for synapsins, including clustering of synaptic vesicles and regulation of synaptic vesicle exocytosis. To investigate the physiological functions of synapsin and to ascertain which domains of synapsin are involved in synaptic targeting in vivo, we expressed synapsin Ib and its N- and C-terminal domains in the photoreceptor cells of transgenic mice. In these cells synapsin Ib is targeted efficiently to synaptic vesicles but has no significant effect on the development, structure or physiology of the synapses. This suggests that synapsin I does not have dominant physiological or morphoregulatory functions at these synapses. Full-length synapsin Ib and the N-terminal domains of synapsin Ib but not its C-terminal domains are transported to synapses, revealing that the molecular apparatus for synaptic targeting of synapsins is also present in cells which form ribbon synapses that normally lack synapsins. This apparatus appears to utilize the conserved N-terminal domains that are shared between all synapsins.  相似文献   

19.
Dispersed neurons from embryonic chicken sympathetic ganglia were innervated in vitro by explants of spinal cord containing the autonomic preganglionic nucleus or somatic motor nucleus. The maturation of postsynaptic acetylcholine (ACh) sensitivity and synaptic activity was evaluated from ACh and synaptically evoked currents in voltage-clamped neurons at several stages of innervation. All innervated cells are more sensitive to ACh than uninnervated neurons regardless of the source of cholinergic input. Similarly, medium conditioned by either dorsal or ventral explants mimics innervation by enhancing neuronal ACh sensitivity. This increase is due to changes in the rate of appearance of ACh receptors on the cell surface. There are also several changes in the nature of synaptic transmission with development in vitro, including an increased frequency of synaptic events and the appearance of larger amplitude synaptic currents. In addition, the mean amplitude of the unit synaptic current mode increases, as predicted from the observed changes in postsynaptic sensitivity. Although spontaneous synaptic current amplitude histograms with multimodal distributions are seen at all stages of development, histograms from early synapses are typically unimodal. Changes in the synaptic currents and ACh sensitivity between 1 and 4 days of innervation were paralleled by an increase in the number of synaptic events that evoked suprathreshold activity in the postsynaptic neurons. The early pre- and postsynaptic differentiation described here for interneuronal synapses formed in vitro may be responsible for increased efficacy of synaptic transmission during development in vivo.  相似文献   

20.
Molecular mechanisms linking pre- and postsynaptic membranes at the interneuronal synapses are little known. We tested the cadherin adhesion system for its localization in synapses of mouse and chick brains. We found that two classes of cadherin-associated proteins, alpha N- and beta-catenin, are broadly distributed in adult brains, colocalizing with a synaptic marker, synaptophysin. At the ultrastructural level, these proteins were localized in synaptic junctions of various types, forming a symmetrical adhesion structure. These structures sharply bordered the transmitter release sites associated with synaptic vesicles, although their segregation was less clear in certain types of synapses. N-cadherin was also localized at a similar site of synaptic junctions but in restricted brain nuclei. In developing synapses, the catenin-bearing contacts dominated their junctional structures. These findings demonstrate that interneuronal synaptic junctions comprise two subdomains, transmitter release zone and catenin-based adherens junction. The catenins localized in these junctions are likely associated with certain cadherin molecules including N-cadherin, and the cadherin/ catenin complex may play a critical role in the formation or maintenance of synaptic junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号