首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traw MB  Bergelson J 《Plant physiology》2003,133(3):1367-1375
Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds.  相似文献   

2.
This study presents a kinetic analysis of the response to wounding in rice plants. In particular, jasmonic acid, salicylic acid, and lipoxygenase activity were measured in leaves of wounded rice plants during the early tillering phase. The results show that endogenous jasmonic acid transiently increases to a maximum 30 min after wounding (jasmonic acid burst) and lipoxygenase activity increases after the jasmonic acid burst, but not after the second smaller peak of endogenous jasmonic acid 23 h after wounding. In contrast, endogenous salicylic acid decreases during the jasmonic acid burst, such that the kinetic profiles of jasmonic acid and salicylic acid are inversely correlated during the early response to wounding. It is proposed here that the increase in endogenous jasmonic acid and the decrease in endogenous salicylic acid may contribute for establishing the efficient negative cross-talk between jasmonic acid and salicylic acid signaling pathways during the early response to wounding in rice.  相似文献   

3.
4.
Herbivore-induced plant defences influence the behaviour of herbivores as well as that of their natural enemies. Jasmonic acid is one of the key hormones involved in both these direct and indirect induced defences. Jasmonic acid treatment of plants changes the composition of defence chemicals in the plants, induces volatile emission, and increases the production of extrafloral nectar. However, few studies have addressed the potential influence of induced defences on flower nectar chemistry and pollinator behaviour. These have shown that herbivore damage can affect pollination rates and plant fitness. Here, we have investigated the effect of jasmonic acid treatment on floral nectar production and the attraction of pollinators, as well as the effect on the behaviour of an herbivore and its natural enemy. The study system consisted of black mustard plants, Brassica nigra L. (Brassicaceae), pollinators of Brassica nigra (i.e., honeybees and syrphid flies), a specialist herbivore, Pieris rapae L. (Lepidoptera: Pieridae), and a parasitoid wasp that uses Pieris larvae as hosts, Cotesia glomerata L. (Hymenoptera: Braconidae). We show that different trophic levels are differentially affected by jasmonic acid-induced changes. While the herbivore prefers control leaves over jasmonic acid-treated leaves for oviposition, the parasitoid C. glomerata is more attracted to jasmonic acid-treated plants than to control plants. We did not observe differences in pollinator preference, the rates of flower visitation by honeybees and syrphid flies were similar for control and jasmonic acid-treated plants. Plants treated with jasmonic acid secreted less nectar than control plants and the concentrations of glucose and fructose tended to be lower than in nectar from control plants. Jasmonic acid treatment resulted in a lower nectar production than actual feeding damage by P. rapae caterpillars.  相似文献   

5.
Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously characterized as elicitin receptors, and is shown to be involved in the activation of plant defense. The biological properties of this LTP1 were compared with those of LTP1-linolenic and LTP1-jasmonic acid complexes. The binding curve of the LTP1-linolenic acid complex to purified tobacco plasma membranes is comparable to the curve obtained with LTP1. In contrast, the LTP1-jasmonic acid complex shows a strongly increased interaction with the plasma membrane receptors. Treatment of tobacco plants with LTP1-jasmonic acid resulted in an enhancement of resistance toward Phytophthora parasitica. These effects were absent upon treatment with LTP1 or jasmonic acid alone. This work presents the first evidence for a biological activity of a LTP1 and points out the crucial role of protein-specific lipophilic ligand interaction in the modulation of the protein activity.  相似文献   

6.
Because jasmonic acid regulates a number of processes, including the expression of vegetative storage proteins in soybean (Glycine max L.) leaves, the relative activity of a specific portion of the jasmonic acid biosynthetic pathway in soybean tissues was examined. Allene oxide synthase and allene oxide cyclase were examined because they constitute a branch point leading specifically from 13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid to 12-oxo-phytodienoic acid, the precursor of jasmonic acid. From growing plants, seed coats (hila plus testae) of green fruits (38 d post-anthesis) were most active, eliciting about 1.5 times greater activity on a per milligram of protein basis than the next most active tissue, which was the pericarp. Leaves from fruiting plants were only one-seventh as active as seed coats, and activities in both immature cotyledons and embryonic axes were very low. No activity was detected in any part of stored, mature seeds. After 72 h of germination of stored seeds, a small amount of activity, about 4% of that in immature seed coats, was found in the plumule-hypocotyl-root, and no activity was detected in the cotyledons. The high levels of jasmonic acid biosynthetic enzymes in soybean pericarp and seed coat suggest a role for jasmonic acid in the transfer of assimilate to seeds.  相似文献   

7.
Ozone is the main photochemical oxidant that causes leaf damage in many plant species, and can thereby significantly decrease the productivity of crops and forests. When ozone is incorporated into plants, it produces reactive oxygen species (ROS), such as superoxide radicals and hydrogen peroxide. These ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid, and jasmonic acid. These phytohormones are required for plant growth, development, and defense responses, and regulate the extent of leaf injury in ozone-fumigated plants. Recently, responses to ozone have been studied using genetically modified plants and mutants with altered hormone levels or signaling pathways. These researches have clarified the roles of phytohormones and the complexity of their signaling pathways. The present paper reviews the biosynthesis of the phytohormones ethylene, salicylic acid, and jasmonic acid, their roles in plant responses to ozone, and multiple interactions between these phytohormones in ozone-exposed plants.Key words: cross-talk, ethylene, jasmonic acid, ozone, phytohormones, programmed cell death, salicylic acid, signaling pathways  相似文献   

8.
Apple fruits ( Malus domestica Borkh.) were harvested from 24 to 136 days after full bloom (DAFB) and endogenous jasmonic acid was analyzed by GC-MS. There were two isomers of jasmonic acid in apple fruit with a ratio of 37:63 ( cis:trans ). The cis:trans ratio remained relatively constant throughout this period of fruit development. The endogenous jasmonic acid concentration was 138 ng g−1 fresh weight 24 DAFB and decreased as fruit developed. Changes in jasmonic acid concentration were coincident with those of respiration, ethylene production, and anthocyanin accumulation in patterns consistent with the reported responses to exogenous jasmonates. Possible roles for jasmonic acid during early fruit development are discussed.  相似文献   

9.
Plant hormones interact at many different levels to form a network of signaling pathways connected by antagonistic and synergistic interactions. Ethylene and jasmonic acid both act to regulate the plant's responsiveness to a common set of biotic stimuli. In addition ethylene has been shown to negatively regulate the plant's response to the rhizobial bacterial signal, Nod factor. This regulation occurs at an early step in the Nod factor signal transduction pathway, at or above Nod factor-induced calcium spiking. Here we show that jasmonic acid also inhibits the plant's responses to rhizobial bacteria, with direct effects on Nod factor-induced calcium spiking. However, unlike ethylene, jasmonic acid not only inhibits spiking but also suppresses the frequency of calcium oscillations when applied at lower concentrations. This effect of jasmonic acid is amplified in the ethylene-insensitive mutant skl, indicating an antagonistic interaction between these two hormones for regulation of Nod factor signaling. The rapidity of the effects of ethylene and jasmonic acid on Nod factor signaling suggests direct crosstalk between these three signal transduction pathways. This work provides a model by which crosstalk between signaling pathways can rapidly integrate environmental, developmental and biotic stimuli to coordinate diverse plant responses.  相似文献   

10.
12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with K(m) values of 50 and 10 microm, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring in A. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.  相似文献   

11.
Jasmonic acid and methyl jasmonate play an essential role in plant defense responses and pollen development. Their levels are temporarily and spatially controlled in plant tissue. However, whereas jasmonate biosynthesis is well studied, metabolic pathways downstream of jasmonic acid are less understood. We studied the uptake and metabolism of jasmonic acid and methyl jasmonate in tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture. We found that upon uptake, jasmonic acid was metabolized to its Glc and gentiobiose esters, and hydroxylation at C-11 or C-12 occurred. Free hydroxylated jasmonates were the preferential fraction of the culture medium. Upon hydrolysis of methyl jasmonate to jasmonic acid, a similar set of conversions occurs. In contrast to jasmonic acid, none of its derivatives interfere with the G2/M transition in synchronized tobacco Bright Yellow-2 cells.  相似文献   

12.
The occurrence of jasmonic acid and related compounds in Dunaliella species was investigated using gas-liquid chromatography/mass spectroscopy (GCY MS). Jasmonic acid was identified in the ethyl acetate soluble-acidic fraction of Dunaliella tertiolecta and Dunaliella salina (Dunal) Teodoresco, The concentration of jasmonic acid in D. salina. which is extremely halophilic, was much higher than that in D. tertiolecta Butcher, These results indicate that jasmonic acid might play an important role in salt-tolerance in Dunaliella.  相似文献   

13.
茉莉酸及其信号传导研究进展   总被引:11,自引:3,他引:8  
朱家红  彭世清 《西北植物学报》2006,26(10):2166-2172
茉莉酸及其衍生物茉莉酸甲酯等统称为茉莉酸盐,是广泛存在于植物中的一种生长调节物质,在植物细胞中起着非常重要的作用.茉莉酸作为信号分子广泛参与调节植物的生长发育和胁迫响应过程.本文主要就茉莉酸的生物合成、茉莉酸的信号传导途径和调控机制、茉莉酸的信号传导途径与乙烯、脱落酸、水杨酸和一氧化氮信号传导途径的相互关系进行了综述.  相似文献   

14.
Signalling and cell death in ozone-exposed plants   总被引:13,自引:0,他引:13  
Experiments with Arabidopsis mutants and sensitive and tolerant pairs in several other species have elucidated the molecular basis of plant ozone sensitivity and ozone lesion development. They have indicated an important role for hormonal signalling in determining the outcome of ozone challenge at the cellular level. The reactive oxygen species (ROS) from ozone degradation can cause either direct necrotic damage or induce the process of programmed cell death. Perception of ozone or ROS from its degradation in the apoplast activates several signal transduction pathways that regulate the responses of the cells to the increased oxidative load. Plant hormones salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in determining the duration and extent of ozone-induced cell death and its propagation. Salicylic acid is required for the programmed cell death, ethylene promotes endogenous ROS formation and lesion propagation, and jasmonic acid is involved in limiting the lesion spreading. Abscisic acid is most likely involved through the regulation of stomata and thus is expected to affect lesion initiation. The roles and interactions of perception of ozone, the immediate downstream responses, hormone biosynthesis and signalling during ozone lesion initiation and formation are reviewed.  相似文献   

15.
To better understand the genetic requirements for R gene-dependent defense activation in Arabidopsis, we tested the effect of several defense response mutants on resistance specified by eight RPP genes (for resistance to Peronospora parasitica) expressed in the Col-0 background. In most cases, resistance was not suppressed by a mutation in the SAR regulatory gene NPR1 or by expression of the NahG transgene. Thus, salicylic acid accumulation and NPR1 function are not necessary for resistance mediated by these RPP genes. In addition, resistance conferred by two of these genes, RPP7 and RPP8, was not significantly suppressed by mutations in either EDS1 or NDR1. RPP7 resistance was also not compromised by mutations in EIN2, JAR1 or COI1 which affect ethylene or jasmonic acid signaling. Double mutants were therefore tested. RPP7 and RPP8 were weakly suppressed in an eds1-2/ndr1-1 background, suggesting that these RPP genes operate additively through EDS1, NDR1 and as-yet-undefined signaling components. RPP7 was not compromised in coi1/npr1 or coi1/NahG backgrounds. These observations suggest that RPP7 initiates resistance through a novel signaling pathway that functions independently of salicylic acid accumulation or jasmonic acid response components.  相似文献   

16.
Biosynthesis of jasmonic Acid by several plant species   总被引:36,自引:13,他引:23       下载免费PDF全文
Six plant species metabolized 18O-labeled 12-oxo-cis,cis-10,15-phytodienoic acid (12-oxo-PDA) to short chain cyclic fatty acids. The plant species were corn (Zea mays L.), eggplant (Solanum melongena L.), flax (Linum usitatissimum L.), oat (Avena sativa L.), sunflower (Helianthus annuus L.), and wheat (Triticum aestivum L.). Among the products was jasmonic acid, a natural plant constituent with growth-regulating properties. The pathway is the same as the one recently reported by us for jasmonic acid synthesis in Vicia faba L. pericarp. First, the ring double bond of 12-oxo-PDA is saturated; then β-oxidation enzymes remove six carbons from the carboxyl side chain of the ring. Substrate specificity studies indicated that neither the stereochemistry of the side chain at carbon 13 of 12-oxo-PDA nor the presence of the double bond at carbon 15 was crucial for either enzyme step. The presence of enzymes which convert 12-oxo-PDA to jasmonic acid in several plant species indicates that this may be a general metabolic pathway in plants.  相似文献   

17.
Campothecin production was increased with elicitors, methyl jasmonate, jasmonic acid, yeast extract elicitor, and ferulic acid in suspension cultures ofCamptotheca acuminata. jasmonic acid was found to be the most efficient elicitor. Camptothecin production increased 11 times by using the optimum dosing concentration of jasmonic acid which was 50 μM. The kinetics of camptothecin accumulation in response to the treatment with jasmonic acid showed that the camptothecin accumulation reached the maximum value at 4 days after jasmonic acid dosing and then a rapid decrease in camptothecin accumulation was observed.  相似文献   

18.
Occurrence of the plant growth regulator jasmonic acid in plants   总被引:17,自引:0,他引:17  
The natural occurrence of jasmonic acid and its methyl ester in plants has been studied using different methods such as GC, GC-MS, HPLC, radioimmunoassay, and bioassay. Jasmonic acid was detected in several Leguminosae plants and a number of species belonging to nine other Angiospermae families. Highest amounts occurred in fruit parts, especially the immature pericarp, but it was found also in flowers and vegetative plant parts, e.g. leaves, stems, and germs. Young apple fruits contain both jasmonic acid and methyl jasmonate, and in Douglas fir, the only Gymnospermae species studied, only the methyl ester could be detected. Jasmonic acid is discussed as an endogenous plant growth regulator widely distributed in higher plants.  相似文献   

19.
20.
SA, JA, ethylene, and disease resistance in plants   总被引:21,自引:0,他引:21  
Exciting advances have been made during the past year: isolating mutants affecting plant disease resistance, cloning genes involved in the regulation of various defense responses, and characterizing novel defense signaling pathways. Recent studies have demonstrated that jasmonic acid and ethylene are important for the induction of nonspecific disease resistance through signaling pathways that are distinct from the classical systemic acquired resistance response pathway regulated by salicylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号