首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The kinetic characteristics of [3H]adenosine uptake, the extent to which accumulated [3H]adenosine was metabolized, the effects such metabolism had on measurements of apparent Michaelis-Menten kinetic values of KT and Vmax, and the sensitivities with which nucleoside transport inhibitors blocked [3H]adenosine accumulations were determined in cultured human fetal astrocytes. KT and Vmax values for accumulations of [3H]-labeled purines using 15-s incubations in the absence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and the adenosine kinase inhibitor 5′-iodotubercidin (ITU) were 6.2 µM and 0.15 nmol/min/mg of protein for the high-affinity and 2.6 mM and 21 nmol/min/mg of protein for the low-affinity components respectively. In the presence of EHNA and ITU, where <4% of accumulated [3H]adenosine was metabolized, transport per se was measured, and kinetic values for KT and Vmax were 179 µM and 5.2 nmol/min/mg of protein, respectively. In the absence of EHNA and ITU, accumulated [3H]adenosine was rapidly metabolized to AMP, ADP, and ATP, and caused an appearance of “concentrative” uptake in that the intracellular levels of [3H]-labeled purines (adenosine plus its metabolites) were 1.4-fold higher than in the medium. No apparent concentrative accumulations of [3H]adenosine were found when assays were conducted using short incubation times in the absence or presence of EHNA and ITU. The nucleoside transport inhibitors dipyridamole (DPR), nitrobenzylthioinosine (NBI), and dilazep biphasically inhibited [3H]adenosine transport; for the inhibitor-sensitive components the IC50 values were 0.7 nM for NBI, 1.3 nM for DPR, and 3.3 nM for dilazep, and for the inhibitor-resistant component the IC50 values were 2.5 µM for NBI, 5.1 µM for dilazep, and 39.0 µM for DPR. These findings, in cultured human fetal astrocytes, represent the first demonstration of inhibitor-sensitive and -resistant adenosine transporters in nontransformed human cells.  相似文献   

2.
Abstract

Equilibrative Nucleoside Transporters (SLC29) are a family of proteins that transport nucleosides, nucleobases and nucleoside analogue drugs across cellular membranes. ENT1 is expressed ubiquitously in mammalian tissues and responsible for a significant portion of nucleoside analog drug uptake in humans. Despite the important clinical role of ENT1, many aspects of the regulation of this protein remain unknown. A major outstanding question in this field is the whether ENT1 is phosphorylated directly. To answer this question, we overexpressed tagged human (h) and mouse (m) ENT1, affinity purified protein using the tag, conducted phosphoamino acid analysis and found that m/hENT1 is predominantly phosphorylated at serine residues. The large intracellular loop of ENT1, between transmembrane domains 6 and 7, has been suggested to be a site of regulation by phosphorylation, therefore we generated His/Ubiquitin tagged peptides of this region and used them for in vitro kinase assays to identify target serines. Our data support a role for PKA and PKC in the phosphorylation of ENT1 within the intracellular loop and show that PKA can phosphorylate multiple sites within this loop while PKC specifically targets serines 279 and 286 and threonine 274. These data demonstrate, for the first time, that ENT1 is a phosphoprotein that can be directly phosphorylated at several sites by more than one kinase. The presence of multiple kinase targets within the loop suggests that ENT1 phosphorylation is considerably more complex than previously thought and thus ENT1 may be subject to phosphorylation by multiple pathways.  相似文献   

3.
Equilibrative nucleoside transporters of the SLC29 family play important roles in many physiological and pharmacological processes, including import of drugs for treatment of cancer, AIDS, cardiovascular, and parasitic diseases. However, no crystal structure is available for any member of this family. In previous studies we generated a computational model of the Leishmania donovani nucleoside transporter 1.1 (LdNT1.1) that captured this permease in the outward-closed conformation, and we identified the extracellular gate. In the present study we have modeled the inward-closed conformation of LdNT1.1 using the crystal structure of the Escherichia coli fucose transporter FucP and have identified four transmembrane helices whose ends close to form a predicted intracellular gate. We have tested this prediction by site-directed mutagenesis of relevant helix residues and by cross-linking of introduced cysteine pairs. The results are consistent with the predictions of the computational model and suggest that a similarly constituted gate operates in other members of the equilibrative nucleoside transporter family.  相似文献   

4.
5.
Extracellular adenosine is transported into chromaffin cells by a high-affinity transport system. The action of adenosine receptor ligands was studied in this cellular model. 5'-(N-Ethylcarboxamido)adenosine (NECA), an agonist of A2 receptors, activated adenosine transport. Km values for adenosine were 4.6 +/- 1.0 (n = 5) and 10.2 +/- 3.0 microM (n = 5) for controls and 100 nM NECA, respectively. The Vmax values were 66.7 +/- 23.5 and 170.2 +/- 30 pmol/10(6) cells/min for controls and 100 nM NECA, respectively. The A1 agonist N6-cyclohexyladenosine, the A1 antagonist 8-cyclopentyl-1, 3-dipropylxanthine, and the A1-A2 antagonist 1,3-dipropyl-8-(4-[(2-aminoethyl)amino]-carbonylmethyloxyphenyl)- xanthine did not significantly modify the adenosine transport in this system. Binding studies done with [3H]dipyridamole, a nucleoside transporter ligand, did not show changes in either the number or affinity of transporter sites after NECA treatment. This ligand can enter cells and quantifies the total number of transporters. The binding studies with [3H]-nitrobenzylthioinosine, which quantifies the plasma membrane transporters, showed a Bmax of 19,200 +/- 800 and 23,200 +/- 700 transporters/cell for controls and 100 nM NECA, respectively. No changes in the KD were obtained. The effects of NECA were not mediated through adenylate cyclase activation, because its action was not imitated by forskolin.  相似文献   

6.
The sugar moiety of nucleosides has been shown to play a major role in permeant‐transporter interaction with human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2). To better understand the structural requirements for interactions with hENT1 and hENT2, a series of uridine analogs with sugar modifications were subjected to an assay that tested their abilities to inhibit [3H]uridine transport mediated by recombinant hENT1 and hENT2 produced in Saccharomyces cerevisiae. hENT1 displayed higher affinity for uridine than hENT2. Both transporters barely tolerated modifications or inversion of configuration at C(3′). The C(2′)‐OH at uridine was a structural determinant for uridine‐hENT1, but not for uridine‐hENT2, interactions. Both transporters were sensitive to modifications at C(5′) and hENT2 displayed more tolerance to removal of C(5′)‐OH than hENT1; addition of an O‐methyl group at C(5′) greatly reduced interaction with either hENT1 or hENT2. The changes in binding energies between transporter proteins and the different uridine analogs suggested that hENT1 formed strong interactions with C(3′)‐OH and moderate interactions with C(2′)‐OH and C(5′)‐OH of uridine, whereas hENT2 formed strong interactions with C(3′)‐OH, weak interactions with C(5′)‐OH, and no interaction with C(2′)‐OH.  相似文献   

7.
Accumulating evidence reveals that sole mutations in hENT3 cause a spectrum of human genetic disorders. Among these include H syndrome, characterized by scleroderma, hyperpigmentation, hypertrichosis, hepatomegaly, cardiac abnormalities and musculoskeletal deformities, pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndrome, characterized by autoantibody-negative diabetes mellitus and skin deformities, familial Rosai-Dorfman disease, characterized by short stature, familial histiocytosis and sinus histiocytosis with massive lymphadenopathy (SHML), characterized by severe tissue infiltration of immune cells and swollen lymph nodes. hENT3 spectrum disorders share a common mutation and share overlapping clinical manifestations that display many intriguing resemblances to mitochondrial and lysosomal disorders. Although earlier studies identify hENT3 as a mitochondrial and a lysosomal nucleoside transporter, the precise connections between hENT3 and the pathophysiology of these disorders remain unresolved. In this study, we performed functional and biochemical characterization of these mutations in hENT3. We report severe reductions/losses of hENT3 nucleoside transport functions of hENT3 syndrome mutants. In addition to transport alterations, we provide evidence for possible loss of hENT3 functions in all H and pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndromes due to either mistrafficking or altered stability of mutant hENT3 proteins.  相似文献   

8.
Adenosine levels increase in brain during cerebral ischemia, and adenosine has receptor-mediated neuroprotective effects. This study was performed to test the hypothesis that nitrobenzylthioinosine (NBMPR), a selective and potent inhibitor of one adenosine transporter subtype termed ENT1, or es, can protect against ischemic neuronal injury by enhancing adenosine levels and potentiating adenosine receptor-mediated effects, including attenuation of the cellular production and release of tumor necrosis factor-alpha (TNF-alpha). In rats, the phosphorylated prodrug form of NBMPR, NBMPR-phosphate, or saline was administered by intracerebroventricular injection 30 min before forebrain ischemia. Seven days following the ischemic episode, rats were killed, and neuronal damage in the CA1 region of the hippocampus was assessed. The number of pyramidal neurons was significantly (p < 0.001) greater in the NBMPR-P treatment group. A trend toward protection was still evident at 28 days postreperfusion. Adenosine increased significantly during ischemia to levels eight- to 85-fold above basal. NBMPR-P treatment did not cause statistically significant increases in ischemic adenosine levels; however, this treatment tended to increase adenosine levels in all brain regions at 7 min postreperfusion. Ischemia-induced expression of TNF-alpha was not altered by NBMPR-P treatment, and the nonselective adenosine receptor antagonist 8-(p-sulfophenyl) theophylline did not abolish the neuroprotective effects of NBMPR-P treatment. These data indicate that NBMPR can protect CA1 pyramidal neurons from ischemic death without statistically significant effects on adenosine levels or adenosine receptor-mediated inhibition of the proinflammatory cytokine TNF-alpha.  相似文献   

9.
10.
Purine transport is essential for malaria parasites to grow because they lack the enzymes necessary for de novo purine biosynthesis. The Plasmodium falciparum Equilibrative Nucleoside Transporter 1 (PfENT1) is a member of the equilibrative nucleoside transporter (ENT) gene family. PfENT1 is a primary purine transport pathway across the P. falciparum plasma membrane because PfENT1 knock-out parasites are not viable at physiologic extracellular purine concentrations. Topology predictions and experimental data indicate that ENT family members have eleven transmembrane (TM) segments although their tertiary structure is unknown. In the current work, we showed that a naturally occurring polymorphism, F394L, in TM11 affects transport substrate Km. We investigated the structure and function of the TM11 segment using the substituted cysteine accessibility method. We showed that mutation to Cys of two highly conserved glycine residues in a GXXXG motif significantly reduces PfENT1 protein expression levels. We speculate that the conserved TM11 GXXXG glycines may be critical for folding and/or assembly. Small, cysteine-specific methanethiosulfonate (MTS) reagents reacted with four TM11 Cys substitution mutants, L393C, I397C, T400C, and Y403C. Larger MTS reagents do not react with the more cytoplasmic positions. Hypoxanthine, a transported substrate, protected L393C, I397C, and T400C from covalent modification by the MTS reagents. Plotted on an α-helical wheel, Leu-393, Ile-397, and Thr-400 lie on one face of the helix in a 60° arc suggesting that TM11 is largely α helical. We infer that they line a water-accessible surface, possibly the purine permeation pathway. These results advance our understanding of the ENT structure.  相似文献   

11.
Abstract: Adenosine transport inhibitors as enhancers of extracellular levels of endogenous adenosine would, presumably, only be effective if, for example, (1) the inhibitors block influx to a greater degree than efflux (release) of intracellular adenosine or (2) the inhibitors block equally well the influx and efflux of adenosine, but significant amounts of adenosine are formed as a result of dephosphorylation of released adenine nucleotides. Limited information is available regarding the directional symmetry of adenosine transporters in neural cells. Using rat brain crude P2 synaptosomal preparations preloaded with l -[3H]adenosine, our objectives here were to determine (1) if l -[3H]adenosine, a substrate for adenosine transporters that is more metabolically stable than physiological d -adenosine, was being released from synaptosomal preparations, (2) the optimal conditions necessary to observe the release, and (3) the degree to which this release was mediated by efflux through bidirectional nucleoside transporters. l -[3H]Adenosine release was found to be concentration and time dependent, temperature sensitive, and linear with synaptosomal protein. l -[3H]Adenosine release was inhibited dose-dependently by dipyridamole, nitrobenzylthioinosine, and dilazep; at concentrations of 100 µM inhibition was at least 40% for dipyridamole, 52% for nitrobenzylthioinosine, and 49% for dilazep. After loading with l -[3H]adenosine alone or l -[3H]adenosine plus unlabeled l -adenosine, d -adenosine, or uridine, l -[3H]-adenosine release was inhibited 42% by l -adenosine, 69% by uridine, and 81% by d -adenosine. The inhibition of l -[3H]adenosine release from the synaptosomal preparations by substrates for or inhibitors of nucleoside transporters suggests that a portion of the release was mediated by nucleoside transporters. This experimental system may prove useful for evaluating the effects of pharmacological agents on bidirectional transport of adenosine.  相似文献   

12.
13.
The nucleoside analogs 5-azacytidine (azacitidine) and 5-aza-2′-deoxycytidine (decitabine) are active against acute myeloid leukemia and myelodysplastic syndromes. Cellular transport across membranes is crucial for uptake of these highly polar hydrophilic molecules. We assessed the ability of azacitidine, decitabine, and, for comparison, gemcitabine, to interact with human nucleoside transporters (hNTs) in Saccharomyces cerevisiae cells (hENT1/2, hCNT1/2/3) or Xenopus laevis oocytes (hENT3/4). All three drugs inhibited hCNT1/3 potently (K i values, 3–26 μM), hENT1/2 and hCNT2 weakly (K i values, 0.5–3.1 mM), and hENT3/4 poorly if at all. Rates of transport of [3H]gemcitabine, [14C]azacitidine, and [3H]decitabine observed in Xenopus oocytes expressing individual recombinant hNTs differed substantially. Cytotoxicity of azacitidine and decitabine was assessed in hNT-expressing or hNT-deficient cultured human cell lines in the absence or presence of transport inhibitors where available. The rank order of cytotoxic sensitivities (IC 50 values, μM) conferred by hNTs were hCNT1 (0.1) > hENT1 (0.3) ? hCNT2 (8.3), hENT2 (9.0) for azacitidine and hENT1 (0.3) > hCNT1 (0.8) ? hENT2, hCNT2 (>100) for decitabine. Protection against cytotoxicity was observed for both drugs in the presence of inhibitors of nucleoside transport, thus suggesting the importance of hNTs in manifestation of toxicity. In summary, all seven hNTs transported azacitidine, with hCNT3 showing the highest rates, whereas hENT1 and hENT2 showed modest transport and hCNT1 and hCNT3 poor transport of decitabine. Our results show for the first time that azacitidine and decitabine exhibit different human nucleoside transportability profiles and their cytotoxicities are dependent on the presence of hNTs, which could serve as potential biomarkers of clinical response.  相似文献   

14.
为探讨CREB在拟黑多刺蚁(Polyrhachis vicina)不同品级脑部mRNA水平的表达,采用地高辛标记法原位杂交技术对拟黑多刺蚁工蚁、雌蚁、雄蚁3个品级脑部CREB mRNA的表达进行了定位研究。结果显示,CREB mRNA在拟黑多刺蚁不同品级脑部均有广泛表达。阳性反应主要分布在蕈形体冠部的Kenyon细胞、视叶和嗅叶等部位。在3个不同品级蚂蚁的脑部中,工蚁的嗅球和蕈形体内有较明显的CREB mRNA阳性反应,雄蚁的视叶具有较强的阳性反应,与工蚁和雄蚁相比,雌蚁脑部各个部位的阳性表达都较弱。推断CREB可能在视觉和嗅觉信息的获取与整合中起着重要作用,且与不同品级蚂蚁的行为相关。  相似文献   

15.
Equilibrative nucleoside transporters play essential roles in nutrient uptake, cardiovascular and renal function, and purine analog drug chemotherapies. Limited structural information is available for this family of transporters; however, residues in transmembrane domains 1, 2, 4, and 5 appear to be important for ligand and inhibitor binding. In order to identify regions of the transporter that are important for ligand specificity, a genetic selection for mutants of the inosine-guanosine-specific Crithidia fasciculata nucleoside transporter 2 (CfNT2) that had gained the ability to transport adenosine was carried out in the yeast Saccharomyces cerevisiae. Nearly all positive clones from the genetic selection carried mutations at lysine 155 in transmembrane domain 4, highlighting lysine 155 as a pivotal residue governing the ligand specificity of CfNT2. Mutation of lysine 155 to asparagine conferred affinity for adenosine on the mutant transporter at the expense of inosine and guanosine affinity due to weakened contacts to the purine ring of the ligand. Following systematic cysteine-scanning mutagenesis, thiol-specific modification of several positions within transmembrane domain 4 was found to interfere with inosine transport capability, indicating that this helix lines the water-filled ligand translocation channel. Additionally, the pattern of modification of transmembrane domain 4 suggested that it may deviate from helicity in the vicinity of residue 155. Position 155 was also protected from modification in the presence of ligand, suggesting that lysine 155 is in or near the ligand binding site. Transmembrane domain 4 and particularly lysine 155 appear to play key roles in ligand discrimination and translocation by CfNT2.  相似文献   

16.
The adenosine transporter 1 (ENT1) transports nucleosides, such as adenosine, and cytotoxic nucleoside analog drugs. ENT1 is well established to play a role in adenosinergic signaling in the cardiovascular system by modulating adenosine levels. Moderate ethanol consumption is cardioprotective and underlying mechanisms of action are not clear although adenosinergic signaling has been implicated. Here, we show that ethanol (5–200 mM) significantly reduces ENT1-dependent [3H] 2-chloroadenosine uptake (by up to 27 %) in the cardiomyocyte cell line, HL-1. Inhibition or absence of ENT1 is known to be cardioprotective, suggesting that the interaction of ethanol with ENT1 may promote adenosinergic cardioprotective pathways in the cardiovasculature. Ethanol sensitivity of adenosine uptake is altered by pharmacological activation of PKA and PKC. Primary cardiomyocytes from PKCε-null mice have significantly greater sensitivity to inhibition (by approximately 37 %) of adenosine uptake by ethanol than controls. These data suggest that the presence of ethanol may compromise ENT1-dependent nucleoside analog drug cytotoxicity, and indeed, ethanol (5 mM) reduces the cytotoxic effects of gemcitabine (2 nM), an anti-cancer drug, in the human cancer cell line, HTB2. Thus, the pharmacological inhibition of ENT1 by ethanol may contribute to ethanol-dependent cardioprotection but compromise gemcitabine cytotoxicity.  相似文献   

17.
18.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific sites in CNS membranes was investigated using cortical tissue from a variety of mammalian species. Mass law analysis of the site-specific binding of NBMPR data revealed that rat, mouse, guinea pig, and dog cortical membranes each contained an apparent single class of high-affinity (KD 0.11-4.9 nM) binding sites for NBMPR; rabbit cortical membranes, however, exhibited two distinct classes of NBMPR binding sites with KD values of 0.4 nM and 13.8 nM. Dipyridamole, a potent inhibitor of nucleoside transport, produced a biphasic profile of inhibition of the binding of NBMPR to guinea pig, rabbit, and dog membranes (IC50 less than 20 nM and IC50 greater than 6 microM for NBMPR binding sites displaying high and low affinity for dipyridamole, respectively). These results are indicative of heterogeneity of NBMPR binding sites in mammalian cortical membranes. Rat and mouse cortical membranes appear to possess only one type of NBMPR binding site, which has low affinity for dipyridamole. Detailed analysis of inhibitor-induced dissociation of NBMPR from its sites in each species led to the conclusion that these multiple forms of NBMPR binding sites are different conformations of a single site associated with the CNS nucleoside transport system, rather than two distinct sites. It is also suggested that the affinity of dipyridamole for each conformation of NBMPR site indicates the susceptibility of that conformation of the nucleoside transport system to inhibition by dipyridamole.  相似文献   

19.
20.
Abstract: Two glucose transport proteins, GLUT1 and GLUT3, have been detected in brain. GLUT1 is concentrated in the endothelial cells of the blood-brain barrier and may be present in neurons and glia; GLUT3 is probably the major neuronal glucose transporter. Of the few studies of glucose transport in the immature brain, none has quantified GLUTS. This study used membrane isolation and immunoblotting techniques to examine the developmental expression of GLUT1 and GLUT3 in four forebrain regions, cerebral microvessels, and choroid plexus, from rats 1–30 days postnatally as compared with adults. The GLUT1 level in whole brain samples was low for 14 days, doubled by 21 days, and doubled again to attain adult levels by 30 days; there was no regional variation. The GLUT3 level in these samples was low during the first postnatal week, increased steadily to adult levels by 21–30 days, and demonstrated regional specificity. The concentration of GLUT1 in microvessels increased steadily after the first postnatal week; the GLUT1 level in choroid plexus was high at birth, decreased at 1 week, and then returned to near fetal levels. GLUT3 was not found in microvessels or choroid plexus. This study indicates that both GLUT1 and GLUT3 are developmentally regulated in rat brain: GLUT1 appears to relate to the nutrient supply and overall growth of the brain, whereas GLUT3 more closely relates to functional activity and neuronal maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号