首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20–30 % lipid and 50–75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2–3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.  相似文献   

2.
Cholesterol and saturated lipid species preferentially partition into liquid ordered microdomains, such as lipid rafts, away from unsaturated lipid species for which the sterol has less affinity in the surrounding liquid-disordered membrane. To observe how cholesterol interacts with unsaturated phospholipids, we have determined, from one-dimensional neutron scattering length density profiles, the depth of cholesterol in phosphatidylcholine (PC) bilayers with varying amounts of acyl chain unsaturation. Through the use of [2,2,3,4,4,6-(2)H(6)]-labeled cholesterol, we show that in 1-palmitoyl-2-oleoylphosphatidylcholine (16:0-18:1 PC), 1,2-dioleoylphosphatidylcholine (18:1-18:1 PC), and 1-stearoyl-2-arachidonylphosphatidylcholine (18:0-20:4 PC) bilayers the center of mass of the deuterated sites is approximately 16 A from the bilayer center. This location places the hydroxyl group of the sterol moiety at the hydrophobic/hydrophilic bilayer interface, which is the generally accepted position. In dramatic contrast, for 20:4-20:4 PC membranes the hydroxyl group is found, unequivocally, sequestered in the bilayer center. We attribute the change in location to the high disorder of polyunsaturated fatty acids (PUFA) that is incompatible with close proximity to the steroid moiety in its usual "upright" orientation.  相似文献   

3.
The incorporation and accumulation of a certain amount of short-chain phosphatidylcholine or lysophosphatidylcholine into lipid bilayers of erythrocyte membranes is the first step causing membrane perturbation in the process of hemolysis. Accumulation of dilauroylglycerophosphocholine into membranes makes human erythrocytes "permeable cells"; Ions such as Na+ or K+ can permeate through the membrane, though large molecules such as hemoglobin can not. The "pore" formation was partially reproduced in liposomes prepared from lipids extracted from human erythrocyte membranes; C12:0PC induced the release of glucose from liposomes but did not significantly induce the release of dextran. It was suggested that the phase boundary between dilauroylglycerophosphocholine and the host membrane bilayer or dilauroylglycerophosphocholine rich domain itself behaves as "pores." Erythrocytes could expand to 1.5 times the original cell volume without any appreciable hemolysis when incubated with C12:0PC at 37 degrees C. The capacity of the erythrocytes to expand was temperature dependent. The capacity may play an important role in the resistance of the cells against lysis. The "permeable cell" stage could be hardly observed when erythrocytes were treated with didecanoylglycerophosphocholine and lysophosphatidylcholine. Perturbation induced by accumulation of didecanoylglycerophosphocholine or lysophosphatidylcholine may cause non specific destruction of membranes rather than formation of a kind of "pore."  相似文献   

4.
Summary Staphylococcus aureus -toxin causes cell damage by forming an amphiphilic hexamer that inserts into the cell membrane and generates a hydrophilic pore. To investigate the role of the three histidine residues of this toxin we modified them with diethylpyrocarbonate, obtaining N-carbethoxy-histidine whose appearance may be followed spectrophotometrically. Despite the statistical nature of random chemical modification, it was possible to establish that modification of any one of the three histidines was enough to impair -toxin activity on red blood cells and platelets. Two out of three histidines were essential for the interaction of the toxin with model membranes such as lipid vesicles and planar bilayers. Loss of lytic activity in both natural and model membranes was due both to defective binding and to defective oligomerization. When -toxin hexamers inserted into lipid vesicles were assayed for chemical modifiability two histidines per monomer were found to be protected from diethylpyrocarbonate modification, whereas only one was protected after delipidation of the oligomer with a detergent. A possible model for the role of each histidine in the monomer is presented.  相似文献   

5.
Acholeplasma laidlawii was grown with different fatty acids for membrane lipid synthesis (saturated straight- and branched-chain acids and mono- and di-unsaturated acids). The ability of 12 different sterols to affect cell growth, lipid head group composition, the order parameter of the acyl chains, and the phase equilibria of in vivo lipid mixtures was studied. The following two effects were observed with respect to cell growth: with a given acyl chain composition of the membrane lipids, growth was stimulated, unaffected, reduced, or completely inhibited (lysis), depending on the sterol structure; and the effect of a certain sterol depended on the acyl chain composition (most striking for epicoprostanol, cholest-4-en-3-one, and cholest-5-en-3-one, which stimulated growth with saturated acyl chains but caused lysis with unsaturated chains). The three lytic sterols were the only sterols that caused a marked decrease in the ratio between the major lipids monoglucosyldiglyceride and diglucosyldiglyceride and hence a decrease in bilayer stability when the membranes were enriched in saturated (palmitoyl) chains. With these chains correlations were found for several sterols between the glucolipid ratio and the order parameter of the acyl chains, as well as the lamellar-reversed hexagonal phase transition, in model systems. A shaft experiment revealed a marked decrease in the ratio of monoglucosyldiglyceride to diglucosyldiglyceride with the lytic sterols in unsaturated (oleoyl) membranes. The two cholestenes induced nonlamellar phases in in vivo mixtures of oleoyl A. laidlawii lipids. The order parameters of the oleoyl chains were almost unaffected by the sterols. Generally, the observed effects cannot be explained by an influence of the sterols on the gel-to-liquid crystalline phase transition.  相似文献   

6.
Staphylococcus aureus -toxin forms ionic channels of large size in lipid bilayer membranes. We have developed two methods for studying the mechanism of pore formation. One is based on measurement of the ionic current flowing through a planar lipid membrane after exposure to the toxin; the other is based on measuring the release of the fluorescent complex Tb-Dipicolinic acid from large unilamellar vesicles under similar conditions.Both methods indicate that the pore formation process is complex, showing an initial delay followed by non-linear kinetics. The power dependence of the pore formation rate on the toxin concentration in planar bilayers indicates that an aggregation mechanism underlies the channel assembly. Arrhenius plots, obtained with both techniques, show no deviation from linearity up to 50°C and the derived activation energies are found to be comparable to those for the binding and the lysis of rabbit erythrocytes by the same toxin.The temperature dependence of the conductance induced in planar bilayers by a large number of toxin channels indicates that the pores are filled with aqueous solution. The analysis of single conductance events shows that a heterogeneous population of pores exist and that smaller channels are preferred at low temperature. We attribute this heterogeneity to the existence of pores resulting from the aggregation of different numbers of monomers.  相似文献   

7.
Cytolytic lymphocytes are endowed with a pore-forming protein called perforin. Recently, a cytolytic domain was located in the first 34 residues of the perforin N-terminus. It has been proposed that the first 19 residues are composed of a 3-domain structure including a putative amphipathic beta-sheet and that the 19 residues are sufficient for cytolytic activity. This model has now been tested by synthesizing peptides covering different portions of the N-terminus, and testing their ability to lyse lipid vesicles or increase the conductance of lipid bilayers or plasma membranes. It was found that the putative beta-sheet is indispensable for lytic activity and that the first 19 residues of the N-terminus are required for optimal lytic activity but that shorter peptides, containing only 16 residues, can form pores in lipid bilayers and cell membranes. A putative amphipathic alpha-helix from the central portion of perforin, homologous to complement C9, is nonlytic to lipid vesicles, but it can form pores in lipid bilayers. Taken together, these results support the model that the perforin N-terminus is important in initial pore formation and that the putative alpha-helical domain may be involved in subsequent perforin polymerization into large pores.  相似文献   

8.
The characteristics of vesicles formed from Dipalmitoyl Phosphatidyl Choline (DPPC) are sensitive to the presence of perturbing molecules such as drugs, peptides, hormones and vitamins. We have used ESR spin labeling and NMR techniques for studying interaction of such molecules with lipid bilayers. ESR spin labeling has been used to monitor thermotropic behaviour of model membranes. Different NMR probes such as1H,31P,13C have been used to gather information regarding the mode of interaction. It has been observed that the model membrane systems respond differently depending upon the localization of the perturbing molecules in the lipid bilayer. Small molecules such as neurotransmitters epinephrine and norepinephrine decrease gel to liquid crystalline phase transition temperature significantly even when present in small amounts. Vitamine E acetate having a hydrophobic hydrocarbon tail orients parallel to the lipid molecule and thereby exhibits dynamics similar to palmitate chain. When the acetate group is replaced by hydroxyl group (-tocopherol), the phase transition becomes broad and the lipid molecules loose freedom of lateral diffusion. This can be attributed to formation of hydrogen bond between the hydroxyl group of -tocopherol and phosphate moiety of lipid. The conformation of antidepressants nitroxazepine and imipramine is significantly altered when embedded in lipid bilayer. Anaesthetic etomidate not only modifies thermotropic characteristics but also induces polymorphism. The normal bilayer arrangement of lipids gets transformed into hexagonal packing. Amino acid tryptophan induces cubic phases in the normal bilayer arrangement of DPPC dispersions. Peptide gonadoliberin shows a reduced internal motion due to the lipid peptide interaction.The major consequences of binding of lipids with externally added molecules are changes in the fluidity and permeability properties of membranes. It has been shown that permeability is effected by the presence of molecules such as propranolol, -tocopherol and its analogue, neurotransmitters, etc. The magnetic resonance methods have thus evolved as power techniques in the study of membrane structure and function.  相似文献   

9.
Summary Electron spin resonance (ESR) studies of human erythrocyte ghosts labeled with 5-nitroxide stearate, I(12,3), indicate that a temperature-dependent lipid phase separation occurs with a high onset at 38°C. Cooling below 38°C induces I(12,3) clustering. Similar phase separations were previously identified in human platelet and cholesterol-loaded [cholesterol/phospholipid molar ratio (C/P)=0.85] rat liver plasma membranes [L.M. Gordon et al., 1983;J. Membrane Biol. 76; 139–149]; these were attributed to redistribution of endogenous lipid components such that I(12,3) is excluded from cholesterol-rich domains and tends to reside in cholesterol-poor domains. Further enrichment of rat liver plasma membranes to C/P ratios of 0.94–0.98 creates an artificial system equivalent to human erythrocyte ghosts (C/P=0.90), using such criteria as probe flexibility, temperature dependent I(12,3) clustering; and polarity of the probe environment. Consequently, cholesterol-rich and-poor domains probably exist in both erythrocyte ghosts and high cholesterol liver membranes at physiologic temperatures. The temperature dependence of cold-induced hypertonic lysis of intact human erythrocytes was examined by incubating cells in 0.9m sucrose for 10 min at 1°C intervals between 9 and 46°C (Stage 1), and then subjecting them to 0°C for 10 min (Stage 2). Plots of released hemoglobin are approx. sigmoidal, with no lysis below 18°C and maximal lysis above 40°C. The protective effect of low temperatures during Stage 1 may be due to the formation of cholesterol-rich domains that alter the bilayer distribution and/or conformation of critical membrane-associated proteins.  相似文献   

10.
Plasma membranes from Saccharomyces cerevisiae were prepared by a new procedure involving lyticase treatment of the yeast cells. The plasma membranes were right-side-out, closed vesicles of uniform appearance with a sterol to phospholipid molar ratio of 0.365. The thermotropic behavior of these plasma membranes from wild-type yeast and from sterol mutants was examined by differential scanning calorimetry, fluorescence anisotropy and Arrhenius kinetics of plasma membrane enzymes. While differential scanning calorimetry failed to demonstrate any lipid transition, fluorescence anisotropy data indicated that lipid transitions were occurring in the plasma membranes of the yeast sterol mutants but not the sterol wild-type. The temperature dependence of the plasma membrane enzymes, chitin synthase and Mg2+-ATPase, was also investigated. The Arrhenius kinetics of chitin synthase did not reveal any transitions in either the sterol mutant or wild-type plasma membranes, yet the Arrhenius kinetics of the Mg2+-ATPase suggested that lipid transitions were occurring in both cases.  相似文献   

11.
Cholesterol dynamics in membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Time-resolved fluorescence anisotropy of the sterol analogue, cholestatrienol, and 13C nuclear magnetic resonance (NMR) spin lattice relaxation time (T1c) measurements of [13C4] labeled cholesterol were exploited to determine the correlation times characterizing the major modes of motion of cholesterol in unsonicated phospholipid multilamellar liposomes. Two modes of motion were found to be important: (a) rotational diffusion and (b) time dependence of the orientation of the director for axial diffusion, or "wobble." From the time-resolved fluorescence anisotropy decays of cholestatrienol in egg phosphatidylcholine (PC) bilayers, a value for tau perpendicular, the correlation time for wobble, of 0.9 x 10(-9) s and a value for S perpendicular, the order parameter characterizing the same motion, of 0.45 s were calculated. Both tau perpendicular and S perpendicular were relatively insensitive to temperature and cholesterol content of the membranes. The T1c measurements of [13C4] labeled cholesterol did not provide a quantitative determination of tau parallel, the correlation time for axial diffusion. T1c from the lipid hydrocarbon chains suggested a value for tau perpendicular similar to that for cholesterol. Steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in a variety of pure and mixed lipid multilamellar liposomes. Both the lipid headgroups and the lipid hydrocarbons chains contributed to the determination of the sterol environment in the membrane, as revealed by these fluorescence measurements. In particular, effects of the phosphatidylethanolamine (PE) headgroup and of multiple unsaturation in the lipid hydrocarbon chains were observed. However, while the steady-state anisotropy was sensitive to these factors, the time-resolved fluorescence analysis indicated that tau perpendicular was not strongly affected by the lipid composition of the membrane. S perpendicular may be increased by the presence of PE. Both steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in three biological membranes: bovine rod outer segment (ROS) disk membranes, human erythrocyte plasma membranes, and light rabbit muscle sarcoplasmic reticulum membranes. In the ROS disk membranes the value for S perpendicular was marginally higher than in the PC membranes, perhaps reflecting the influence of PE. The dramatic difference noted was in the value for tau perpendicular. In both the ROS disk membranes and the erythrocyte membranes, tau perpendicular was one-third to one-fifth of tau perpendicular in the phospholipid bilayers. This result may reveal an influence of membrane proteins on sterol behavior.  相似文献   

12.
A synthetic, 26-residue peptide having a strong helix forming potential in the protonated state was designed to interact with lipid bilayers in a pH-dependent way. On the basis of this concept a cluster of four glutamic acid residues was inserted in the central region of the amphipathic peptide to promote helix destabilization by mutual charge repulsion at neutral pH. Protonation of these residues might then bring about both a pH-mediated change in hydrophobicity and conformation forming a membrane-active amphiphilic helix. The sequence GLGTLLTLLEFLLEELLEFLKRKRQQamide produced by the design strategy induced pH-triggered lysis of human erythrocytes. A molecular model correlating the lytic activity to the formation of transmembrane pores which were detected by electron microscopy in erythrocyte membranes is discussed. Circular dichroism studies indicated a self-association of the monomeric random coil form with increasing peptide concentration leading to the apparent induction of strong alpha-helix formation (approximately 100% helicity) in the fully aggregated state. However, no pH-dependent helix-random coil transition was observed, implying that interhelical hydrophobic and ionic interactions not only govern the self-association but also decisively influence the conformational stability of the peptide.  相似文献   

13.
The properties of dipalmitoylphosphatidylcholine (DPPC):6-ketocholestanol bilayer at 50 mol% sterol were studied using the molecular dynamics simulation technique. Our simulations were performed at constant pressure and temperature on a nanosecond time scale. Data from this simulation were compared to the results of our previous simulations on DPPC and DPPC-cholesterol bilayers. We conclude that the differences in the properties of membranes with cholesterol and ketocholestanol are due to the difference in 6-ketocholestanol and cholesterol location in the bilayer. The presence of the keto group in ketocholestanol moves the sterol towards the polar region closer to interface with water. We predict that similar mechanisms would govern the properties of membranes with other oxygenated sterols, such as for example 7-ketocholesterol. Results of our simulations are in a good agreement with the data available from the experiment.  相似文献   

14.
15.
In this study, we used cholestatrienol (CTL) as a fluorescent reporter molecule to study sterol-rich L(o) domains in complex lipid bilayers. CTL is a fluorescent cholesterol analog that mimics the behavior of cholesterol well. The ability of 12SLPC to quench the fluorescence of cholestatrienol gives a measure of the amount of sterol included in L(o) domains in mixed lipid membranes. The stability of sterol-rich domains formed in complex lipid mixtures containing saturated sphingomyelins, phosphatidylcholines, or galactosylceramide as potential domain-forming lipids were studied. The amount of sterol associated with sterol-rich domains seemed to always increase with increasing temperature. The quenching efficiency was highly dependent on the domain-forming lipid present in complex lipid mixtures. Sphingomyelins formed stable sterol-enriched domains and were able to shield CTL from quenching better than the other lipids included in this study. The saturated phosphatidylcholines also formed sterol-rich domains, but the quenching efficiency in membranes with these was higher than with sphingomyelins and the domains melted at lower temperatures. PGalCer was not able to form sterol-enriched domains. However, we found that PGalCer stabilized sterol-rich domains formed in PSM-containing bilayers. Using a fluorescent ceramide analog, we also demonstrated that N-palmitoyl-ceramide displaced the sterol from sphingolipid-rich domains in mixed bilayer membranes.  相似文献   

16.
A cytotoxic protein, isolated from Pseudomonas aeruginosa (PACT), was tested on red blood cells of rats and on black lipid membranes for changes of membrane permeability. In rat erythrocytes PACT induces lysis indicative of the formation of a leak permeable to monovalent ions. The dose response curve for the PACT-induced hemolysis demonstrates that the rate of lysis as well as the fraction of lytic cells increases with increasing toxin concentration. Furthermore, the leak pathway discriminates hydrophilic non-electrolytes according to their molecular weight. The findings indicate formation by PACT of a pore with an apparent radius of about 1.2 nm. In pure lipid membranes PACT forms hydrophilic pathways with moderate selectivity for small cations over small anions. The presence of cholesterol is a prerequisite for the occurrence of these PACT-induced permeability changes.  相似文献   

17.
The antioxidant activity of several plant catechol derivatives was tested in buffer, plasma, and human erythrocytes. In buffer, chlorogenic acid (CGA), caffeic acid (CA), and dihydrocaffeic acid (DCA) reduced ferric iron equally well in the ferric reducing antioxidant power (FRAP) assay. Low concentrations of the polyphenols enhanced the ability of plasma to reduce ferric iron by about 10%. In plasma, lipid hydroperoxide and F2-isoprostane formation induced by a water-soluble free radical initiator were reduced by CGA at concentrations as low as 20 M. During incubation at 37°C, human erythrocytes took up DCA, but not CGA, and intracellular DCA enhanced the ability of erythrocytes to reduce extracellular ferricyanide. When intact erythrocytes were exposed to oxidant stress generated by liposomes containing small amounts of lipid hydroperoxides, extracellular CGA at a concentration of 5 M decreased both lipid peroxidation in the liposomes, and spared -tocopherol in erythrocyte membranes. These results suggest that the catechol structure of these compounds convey the antioxidant effect in plasma and in erythrocytes.  相似文献   

18.
Among the large family of fatty acid binding proteins, the liver L-FABP is unique in that it not only binds fatty acids but also interacts with sterols to enhance sterol transfer between membranes. Nevertheless, the mechanism whereby L-FABP potentiates intermembrane sterol transfer is unknown. Both fluorescence and dialysis data indicate L-FABP mediated sterol transfer between L-cell fibroblast plasma membranes occurs by a direct membrane effect: First, dansylated-L-FABP (DNS-L-FABP) is bound to L-cell fibroblast plasma membranes as indicated by increased DNS-L-FABP steady state polarization and phase resolved limiting anisotropy. Second, coumarin-L-FABP (CPM-L-FABP) fluorescence lifetimes were significantly increased upon interaction with plasma membranes. Third, dialysis studies with3H-cholesterol loaded plasma membranes showed that L-FABP added to the donor compartment of the dialysis cell stimulated3H-cholesterol transfer whether or not the dialysis membrane was permeable to L-FABP. However, L-FABP mediated intermembrane sterol transfer did require a sterol binding site on L-FABP. Chemically blocking the ligand binding site also inhibited L-FABP activity in intermembrane sterol transfer. Finally, L-FABP did not act either as an aqueous carrier or in membrane fusion. The fact that L-FABP interacted with plasma membrane vesicles and required a sterol binding site was consistent with a mode of action whereby L-FABP binds to the membrane prior to releasing sterol from the bilayer.Abbreviations 3H-CHO [1,2-3H(N)]-cholesterol - ANTS 8-aminonaphthalene-1,3,6-trisulfonic acid - CF carboxyfluorescein - CHO cholesterol - CPM (coumarin maleimide) 7-diethylamino-3-(4-maleimidylphenyl)-4-methylcoumarin - cPNA cisparinaric acid - DHE (dehydroergosterol) 5,7,9(11),22-ergostatetraen-3-ol - DMF dimethyl formamide - DMPOPOP 1,4-bis[4-methyl-5-phenyl-2-oxazolyl]benzene - DNS (dansyl chloride) 5-dimethylaminonaphthalene-1-sulfonylchloride - DPX p-xylene-bis-pyridinium bromide - FBS fetal bovine serum - fluorescamine 4-phenylspiro[furan-2(3H), 1 phthalan]-3,3-dione - L-FABP liver fatty acid binding protein - NPG p-nitrophenylglyoxal - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine - SUV small unilamellar vesicle(s) - TNM tetranitromethane This work was supported in part by the National Institutes of Health United States Public Health Service (GM31651 and DK41402) and the American Heart Association (Postdoctoral Fellowship to JKW). The helpful assistance of Dr. Scott M. Colles and Mr. Daniel R. Prows in isolating L-FABP was much appreciated.  相似文献   

19.
Phosphorus NMR spectroscopy was used to characterize the importance of electrostatic interactions in the lytic activity of melittin, a cationic peptide. The micellization induced by melittin has been characterized for several lipid mixtures composed of saturated phosphatidylcholine (PC) and a limited amount of charged lipid. For these systems, the thermal polymorphism is similar to the one observed for pure PC: small comicelles are stable in the gel phase and extended bilayers are formed in the liquid crystalline phase. Vesicle surface charge density influences strongly the micellization. Our results show that the presence of negatively charged lipids (phospholipid or unprotonated fatty acid) reduces the proportion of lysed vesicles. Conversely, the presence of positively charged lipids leads to a promotion of the lytic activity of the peptide. The modulation of the lytic effect is proposed to originate from the electrostatic interactions between the peptide and the bilayer surface. Attractive interactions anchor the peptide at the surface and, as a consequence, inhibit its lytic activity. Conversely, repulsive interactions favor the redistribution of melittin into the bilayer, causing enhanced lysis. A quantitative analysis of the interaction between melittin and negatively charged bilayers suggests that electroneutrality is reached at the surface, before micellization. The surface charge density of the lipid layer appears to be a determining factor for the lipid/peptide stoichiometry of the comicelles; a decrease in the lipid/peptide stoichiometry in the presence of negatively charged lipids appears to be a general consequence of the higher affinity of melittin for these membranes.  相似文献   

20.
Antimicrobial peptides, isolated from the dorsal glands of Australian tree frogs, possess a wide spectrum of biological activity and some are specific to certain pathogens. These peptides have the capability of disrupting bacterial membranes and lysing lipid bilayers. This study focused on the following amphibian peptides: (1) aurein 1.2, a 13-residue peptide; (2) citropin 1.1, with 16 residues; and (3) maculatin 1.1, with 21 residues. The antibiotic activity and structure of these peptides have been studied and compared and possible mechanisms by which the peptides lyse bacterial membrane cells have been proposed. The peptides adopt amphipathic -helical structures in the presence of lipid micelles and vesicles. Specifically 15N-labelled peptides were studied using solid-state NMR to determine their structure and orientation in model lipid bilayers. The effect of these peptides on phospholipid membranes was determined by 2H and 31P solid-state NMR techniques in order to understand the mechanisms by which they exert their biological effects that lead to the disruption of the bacterial cell membrane. Aurein 1.2 and citropin 1.1 are too short to span the membrane bilayer while the longer maculatin 1.1, which may be flexible due to the central proline, would be able to span the bilayer as a transmembrane -helix. All three peptides had a peripheral interaction with phosphatidylcholine bilayers and appear to be located in the aqueous region of the membrane bilayer. It is proposed that these antimicrobial peptides have a "detergent"-like mechanism of membrane lysis.This paper was submitted as a record of the 2002 Australian Biophysical Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号