首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiotic behaviour of identical and homologous rye chromosomes was investigated in colchicine-induced duplicated meiocytes obtained from different wheat-rye derivatives. A great reduction in the amount of metaphase I (MI) associations accompanied by a strong tendency for identical over homologous nonidentical preferential MI pairing was found in all of the four rye chromosome arms analysed. Both of these features appear to be associated with a more distal chiasma localization where the presence of an interstitial C-band has allowed two distinct regions within the same chromosome arm to be studied separately. On the other hand, the MI pairing failure observed for the rye chromosomes under analysis does not seem to be an effect of telomeric or interstitial C-heterochromatin.by P.B. Moens  相似文献   

2.
The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat--rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.  相似文献   

3.
The effect of telomere heterochromatin on metaphase I association of chromosome pair 1R of rye was analyzed in normal diploid plants of rye (2n=14) and in wheat-rye derivatives with the chromosome constitution (0–7)A(0–7)BRR (2n=20, 21 and 22). The C-banding pattern of 1R was variable between plants. In diploid rye the presence or absence of telomeric heterochromatin in 1R does not influence its meiotic pairing. However, in wheat-rye derivatives the presence of telomeric heterochromatin decreases chiasma frequency in the 1R bivalent. This cannot be attributed to interference of heterochromatin with chiasma terminalization. This effect of heterochromatin is most pronounced in heterozygous condition. In plants heterozygous for telomeric C-bands the reduction of pairing is stronger in the short arm than in the long arm of the 1R bivalent.  相似文献   

4.
The short arm of rye (Secale cereale) chromosome 1 has been widely used in breeding programs to incorporate new disease resistance genes into wheat. Using wheat-rye translocation and recombinant lines, molecular markers were isolated and mapped within chromosomal regions of 1RS carrying rust resistance genes Lr26, Sr31, Yr9 from 'Petkus' and SrR from 'Imperial' rye. RFLP markers previously mapped to chromosome 1HS of barley - flanking the complex Mla powdery mildew resistance gene locus - and chromosome 1DS of Aegilops tauschii - flanking the Sr33 stem rust resistance gene - were shown to map on either side of rust resistance genes on 1RS. Three non cross-hybridising Resistance Gene Analog markers, one of them being derived from the Mla gene family, were mapped within same region of 1RS. PCR-based markers were developed which were tightly linked to the rust resistance genes in 'Imperial' and 'Petkus' rye and which have potential for use in marker-assisted breeding.  相似文献   

5.
Summary In five genetically different inbred lines of rye and in the seven Chinese Spring/Imperial wheatrye addition lines, chiasma distribution in rye chromosomes was studied with respect to the amount and position of constitutive heterochromatin (Giemsa C-bands). In all inbred lines, rye chromosomes with one primary terminal band were more frequently found as univalents than those with primary bands on both telomeres. These chromosomes were most probably 5R and/or 6R. In the addition lines a highly significant reduction in the number of arms bound by chiasmata was found for rye chromosomes 5R and 6R. Because of the similar chiasma distribution in the inbred lines and in the rye chromosomes of the addition lines, no effect of the wheat genome on the number of chiasmata in the rye chromosomes can be ascertained. However, a relationship between chiasma frequency and chromosome arm length seems to exist, since under reduced chiasma conditions the two shortest arms of the rye complement, those of chromosomes 5R and 6R, frequently fail to form a chiasma. No effect of the large blocks of constitutive heterochromatin in the telomeres of the rye chromosomes on the position of chiasmata within a bivalent could be established.This study was financially supported by the Deutsche Forschungsgemeinschaft  相似文献   

6.
B. N. Irani  C. R. Bhatia 《Genetica》1972,43(2):195-200
Following disc electrophoresis on standard gels, rye seed extracts showed two bands (ADH-3 and 5) for alcohol dehydrogenase. The ADH-3 band was homologous to the ADH band observed in other diploid species of the Triticinae, and with the ADH-3 band of 4 × and 6 × wheat. It is proposed that the rye isoenzymes ADH-3 and 5 are governed respectively, by the genes Adh R1 and Adh R2. Using bread wheat (Holdfast) lines with disomic addition of individual rye (King II) chromosomes, we found that the ADH-5 band was associated with the addition of rye chromosome IV (after Riley), indicating thereby that Adh R2 gene is located on this chromosome. The products of Adh R1 and Adh R2 do not form active heterodimers, among themselves, but do form active dimers with wheat ADH monomers. It is suggested that the use of chromosomal addition lines may provide a method for locating genes for those enzymes, where the rye and wheat isoenzymes are electrophoretically distinct.  相似文献   

7.
The characteristic features of androgenesis in six wheat-rye substitution lines Triticum aestivum L. (cv. Saratovskaya 29)/Secale cereale L. (cv. Onokhoiskaya) and triticale (2n = 56) using anther culture at different concentrations of 2,4-D in the growth medium were studied. Under variable cultivation conditions, the significant effect of genotypic diversity on the variability of such androgenesis parameters as the frequency of productive anthers, the frequency of embryoid formation, and the frequency of total regenerated plantlets, was shown. It was demonstrated that chromosomes 1R, 3R, and 7R stimulated the formation of androgenous embryoids, while chromosome 5R produced an opposite effect. In triticale and substitution lines, the regeneration ability of androgenous embryoids induced by elevated 2,4-D concentrations was inhibited. Chromosome 1R of the Onokhoiskaya cultivar was suggested to contain genes suppressing regeneration of green plantlets, while chromosome 3R, conversely, stimulated their formation. Chromosomes 1R, 2R, 3R, and 7R of the Onokhoiskaya cultivar did not inhibit the spontaneous formation of androgenous hexaploids in the substitution lines.  相似文献   

8.

Key message

Genetic diversity in elite rye germplasm as well as F 2:3 testcross design enables fast QTL mapping to approach genes controlling grain yield, grain weight, tiller number and heading date in rye hybrids.

Abstract

Winter rye (Secale cereale L.) is a multipurpose cereal crop closely related to wheat, which offers the opportunity for a sustainable production of food and feed and which continues to emerge as a renewable energy source for the production of bioethanol and biomethane. Rye contributes to increase agricultural crop species diversity particularly in Central and Eastern Europe. In contrast to other small grain cereals, knowledge on the genetic architecture of complex inherited, agronomic important traits is yet limited for the outbreeding rye. We have performed a QTL analysis based on a F2:3 design and testcross performance of 258 experimental hybrids in multi-environmental field trials. A genetic linkage map covering 964.9 cM based on SSR, conserved-orthologous set (COS), and mixed-phase dominant DArT markers allowed to describe 22 QTL with significant effects for grain yield, heading date, tiller number, and thousand grain weight across seven environments. Using rye COS markers, orthologous segments for these traits have been identified in the rice genome, which carry cloned and functionally characterized rice genes. The initial genome scan described here together with the existing knowledge on candidate genes provides the basis for subsequent analyses of the genetic and molecular mechanisms underlying agronomic important traits in rye.
  相似文献   

9.
Studies of genetic effects of early selection of maize based on seed quality traits are rare, especially those that use materials from different heterotic groups. These studies are also useful in tropical environments and for the advancement of sustainable agriculture with cropping during seasons not commonly used for cultivation. We estimated, through diallel crosses, the predominant genetic effects on the expression of agronomic traits and seed quality and on the general combining ability of nine maize lines from commercial hybrids and the specific combining ability of hybrid combinations among them. In the evaluation of seed quality, seven tests were used: first count and final count of seed germination, seedling vigor classification, cold tolerance, seedling emergence rate in a sand seedbed, speed of emergence in a sand seedbed, and speed of emergence index. Plant height, first ear height and grain yield were the estimated agronomic traits. In the diallel analysis, method 3 (model I) proposed by Griffing was used. There was a greater significance of non-additive genetic effects in the genetic control of seed quality of the various lines. The Flash, Dekalb 350 and P 30F80 lines combined high seed quality and high grain yield. For growth during the normal planting season, the combinations CD 3121-1 x P 30F80, Speed x CD 3121-2, Dow 8330 x AG 8080 and Dekalb 350 x CD 3121-2 were the most promising for both seed quality and agronomic traits.  相似文献   

10.
Summary Progenies of a tetraploid 1BL/1RS wheat-rye translocation line, CV 256, selected from the cross Cando x Veery, were analyzed by means of Giemsa C-banding. CV 256 is cytologically stable for the presence of the 1BL/1RS translocation but still segregating for A- and B-genome chromosomes of Cando and Veery. In CV 256, nucleolar activity of the 1RS NOR locus is suppressed, as judged by the absence of a secondary constriction in that rye segment and the capability of organizing nucleoli. PAGE analysis of prolamins confirmed the presence of two 1RS secalins in all single seeds analyzed. SDS-PAGE analysis of reduced glutenins of single seeds indicated that some seeds contained the Cando Glu-B1 locus (subunits 6+8), some contained the Veery Glu-B1 locus (subunits 7+9) while others contained all four subunits, indicating that the material was heterozygous. Pm8 resistance is expressed in the tetraploid 1BL/1RS translocation line based on the reactions of six well-defined powdery mildew isolates. However, Pm8 resistance is not expressed in the hexaploid wheat cultivars Olymp, Heinrich and Florida, which also contain the 1BL/1RS translocation. Obviously, the existence of the 1BL/1RS translocation is not a proof for the expression of the associated genes. PAGE results did not show a clear linkage between powdery mildew resistance and the presence of 1RS secalins.  相似文献   

11.
A set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs) was subjected to a QTL study to verify genetic effects for agronomic traits, previously detected in the BC2DH population S42 (von Korff et al. 2006 in Theor Appl Genet 112:1221–1231) and, in addition, to identify new QTLs and favorable wild barley alleles. Each line within the S42IL set contains a single marker-defined chromosomal introgression from wild barley (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is exclusively derived from elite spring barley (H. vulgare ssp. vulgare). Agronomic field data of the S42ILs were collected for seven traits from three different environments during the 2007 growing season. For detection of putative QTLs, a two-factorial mixed model ANOVA and, subsequently, a Dunnett test with the recurrent parent as a control were conducted. The presence of a QTL effect on a wild barley introgression was accepted, if the trait value of a particular S42IL was significantly (P < 0.05) different from the control, either across all environments and/or in a particular environment. A total of 47 QTLs were localized in the S42IL set, among which 39 QTLs were significant across all tested environments. For 19 QTLs (40.4%), the wild barley introgression was associated with a favorable effect on trait performance. Von Korff et al. (2006 in Theor Appl Genet 112:1221–1231) mapped altogether 44 QTLs for six agronomic traits to genomic regions, which are represented by wild barley introgressions of the S42IL set. Here, 18 QTLs (40.9%) revealed a favorable wild barley effect on the trait performance. By means of the S42ILs, 20 out of the 44 QTLs (45.5%) and ten out of the 18 favorable effects (55.6%) were verified. Most QTL effects were confirmed for the traits days until heading and plant height. For the six corresponding traits, a total of 17 new QTLs were identified, where at six QTLs (35.3%) the exotic introgression caused an improved trait performance. In addition, eight QTLs for the newly studied trait grains per ear were detected. Here, no QTL from wild barley exhibited a favorable effect. The introgression line S42IL-107, which carries an introgression on chromosome 2H, 17–42 cM is an example for S42ILs carrying several QTL effects simultaneously. This line exhibited improved performance across all tested environments for the traits days until heading, plant height and thousand grain weight. The line can be directly used to transfer valuable Hsp alleles into modern elite cultivars, and, thus, for breeding of improved varieties.  相似文献   

12.
Comparative sequence analysis of the resistance gene analog (RGA) marker locus aACT/CAA (originally found to be tightly linked to the multiallelic barley Mla cluster) from genomes of barley, wheat and rye revealed a high level of relatedness among one another and showed high similarity to a various number of NBS-LRR disease resistance proteins. Using the sequence-specific polymerase chain reaction (PCR), RGA marker aACT/CAA was mapped on group 1S chromosomes of the Triticeae and was associated with disease resistance loci. In barley and rye, the marker showed linkage to orthologous powdery mildew resistance genes Mla1 and Pm17, respectively, while in wheat linkage with a QTL against fusarium head blight (FHB) disease was determined. The use of RGA clones for R gene mapping and their role in the expression of qualitative and quantitative resistance is discussed.  相似文献   

13.
The character of chromosome pairing in meiocytes was studied in F1 wheat-rye Triticum aestivum L. x Secale cereale L. (ABDR, 4x = 28) hybrids with three types of chromosome behavior: reductional, equational, and equational + reductional. A high variation of the frequencies of bivalents and ring univalents was observed in meiocytes with the reductional or equational + reductional type of chromosome behavior. The type of chromosome division was found to affect the bivalent and ring univalent frequencies. Chromosome pairing occurred in 10.28% of meiocytes with the reductional chromosome behavior, 0.93% of meiocytes with the equational chromosome behavior, and 10.81% of meiocytes with the equational + reductional chromosome behavior. On average, 0.13 bivalents per cell formed in meiocytes of the hybrid population. C-banding and genomic in situ hybridization (GISH) showed that both rye and wheat chromosomes produced ring univalents. The role of the Ph genes in regulating the bivalent formation in meiocytes with different types of chromosome behavior is discussed.  相似文献   

14.

Key message

We investigated associations between line per se and testcross performance in rye and suggested that selection for per se performance is valuable for several traits in multi-stage selection programs.

Abstract

Genotypic correlation between line per se and testcross performance is an important quantitative-genetic parameter for optimizing hybrid breeding programs. The main goal of this survey was to study the association of line per se and testcross performance at the phenotypic level. We used experimental data from the line per se and testcross performance of two segregating winter rye populations (A, B) with each of 220 progenies tested in six environments for eight agronomic and quality traits. Genotypic variances were considerably larger for per se than for testcross performance of all investigated traits resulting in higher heritabilities of the former in most instances. Genotypic correlations (r g) between testcross and line per se performance decreased with increasing complexity of the trait as shown by the respective heritabilities. They were highest (r g ≥ 0.7) for plant height and test weight in population B, and thousand-kernel weight, falling number and starch content in both populations. A selection of these traits for line per se performance in early generations will save field plots in further testing testcross performance and increase efficiency of hybrid breeding.  相似文献   

15.
The advanced lines of octoploid triticale which have been bred for nearly a half century in China show significant improvements in agronomic traits such as plant height, fertility, threshability, maturity and seed plumpness, although no intentional cytological selection had been performed. In this study, eight primary and six advanced lines were analyzed by fluorescence and genomic in situ hybridization to elucidate their chromosome constitutions. In the advanced lines, about 70% of the plants examined had 2n = 56 chromosomes (range: 50 to 58). Almost all advanced lines, however, had lost rye chromosome 2R and the short arm of 5R (5RS). The exceptions were lines Y1005 and Y4683: The former had lost only the 2R chromosome and the latter only 5RS. The reduction of rye chromosomes was compensated by an extra pair of 2D or A-genome (possibly 2A) chromosomes in plants with 2n = 56. This suggests that the loss of 2R and 5RS chromosomes contributes to the improvement of octoploid triticale. Since the plants with chromosome 2R are non-free threshing and chromosome 2D of synthetic wheat is known to carry the Tg (tenacious glumes) gene, it is possible that chromosome 2R carries a gene affecting the threshability, and we carried out selection to remove it. We also discuss the possible relationshipbetween 5RS and the genetic stability of octoploid triticale.  相似文献   

16.
 RAPD markers and agronomic traits were used to determine the genetic relationships among 32 breeding lines of melon belonging to seven varietal types. Most of the breeding lines were Galia and Piel de Sapo genotypes, which are currently being used in breeding programmes to develop new hybrid combinations. A total of 115 polymorphic reliable bands from 43 primers and 24 agronomic traits were scored for genetic distance calculations and cluster analysis. A high concordance between RAPDs and agronomic traits was observed when genetic relationships among lines were assessed. In addition, RAPD data were highly correlated with the pedigree information already known for the lines and revealed the existence of two clusters for each varietal type that comprised the lines sharing similar agronomic features. These groupings were consistent with the development of breeding programmes trying to generate two separate sets of parental lines for hybrid production. Nevertheless, the performance of certain hybrids indicated that RAPDs were more suitable markers than agronomic traits in predicting genetic distance among the breeding lines analysed. The employment of RAPDs as molecular markers both in germplasm management and improvement, as well as in the selection of parental lines for the development of new hybrid combinations, is discussed. Received: 25 July 1997 / Accepted: 6 October 1997  相似文献   

17.
采用高效液相色谱法测定了16个白花除虫菊[Pyrethrum cinerariifolium(Trev.)Vis.]同源四倍体株系干花中的总除虫菊酯、总除虫菊酯Ⅰ(PyⅠ)和总除虫菊酯Ⅱ(PyⅡ)含量,并分析了16个同源四倍体株系花中总除虫菊酯含量的动态变化规律以及花期的农艺性状。结果表明,管状花开放初期,同源四倍体株系干花中的除虫菊酯含量最高,其中11个株系的总除虫菊酯含量高于二倍体株系且7个株系干花中的总除虫菊酯含量高于1.4%,达到一级花的质量标准。同源四倍体株系的花薹和花序的农艺性状表现出明显的多倍体性状,花薹低,花盘直径大,干花产量高,通过合理密植可以提高同源四倍体株系的干花产量。  相似文献   

18.
The complex nature of plant resistance to drought makes the process of selecting the appropriate genes that increase the resistance to drought very difficult. With the future in mind, the aim of our study was to search for physiological and biochemical parameters which could provide a basis for the identification of genes controlling rye resistance to drought stress. The experiments were carried out on three inbred lines of rye: S120, S76 and M112, a recombinant inbred line of population RIL-M; lines in the tillering phase were subjected to drought stress for 4 weeks. Selected physiological indicators of PSII photochemical system [chlorophyll a fluorescence kinetics (FC) and photosynthetic pigment contents (PPC)], biochemical indicators (proline, soluble sugars, total phenolics) and selected agronomic traits were determined. Drought did not significantly affect the majority of the measured FC and PPC parameters in any of the three lines. Due to the different reactions of the lines to drought stress, depending on the analyzed characteristics, the authors concluded that the analyzed indicators can be used to study QTL locations in response to drought stress in the RIL-M mapping population of rye.  相似文献   

19.

Key message

Evaluation of seed protein alleles in soybean populations showed that an increase in protein concentration is generally associated with a decrease in oil concentration and yield.

Abstract

Soybean [Glycine max (L.) Merrill] meal is one of the most important plant-based protein sources in the world. Developing cultivars high in seed protein concentration and seed yield is a difficult task because the traits have an inverse relationship. Over two decades ago, a protein quantitative trait loci (QTL) was mapped on chromosome (chr) 20, and this QTL has been mapped to the same position in several studies and given the confirmed QTL designation cqSeed protein-003. In addition, the wp allele on chr 2, which confers pink flower color, has also been associated with increased protein concentration. The objective of our study was to evaluate the effect of cqSeed protein-003 and the wp locus on seed composition and agronomic traits in elite soybean backgrounds adapted to the Midwestern USA. Segregating populations of isogenic lines were developed to test the wp allele and the chr 20 high protein QTL alleles from Danbaekkong (PI619083) and Glycine soja PI468916 at cqSeed protein-003. An increase in protein concentration and decrease in yield were generally coupled with the high protein alleles at cqSeed protein-003 across populations, whereas the effects of wp on protein concentration and yield were variable. These results not only demonstrate the difficulty in developing cultivars with increased protein and yield but also provide information for breeding programs seeking to improve seed composition and agronomic traits simultaneously.
  相似文献   

20.
Radiation-induced wheat-rye chromosome translocation lines resistant to Hessian fly, Mayetiola destructor (say), were analyzed by in situ hybridization using total genomic and highly repetitive rye DNA probes pSc119 and pSc74. In situ hybridization analysis revealed the exact locations of the translocation breakpoints and allowed the estimation of the sizes of the transferred rye segments. T6BS·6BL-6RL and T4BS· 4BL-6RL are terminal translocations with either most of the complete long arm of rye chromosome 6R or only the distal 57% of the 6RL arm attached to the long arms of wheat chromosomes 6B and 4B, respectively. The breakpoint in T6BS·6BL-6RL is located at a fraction length (FL) of 0.11 in the long arm of T6BS 6BL-6RL and at FL 0.46 in the long arm of T4BS·4BL-6RL. Ti4AS·4AL-6RL-4AL is an intercalary translocation with the breakpoint located at FL 0.06 in the long arm of wheat chromosome 4A. The inserted 6RL segment, with the Hessian fly resistance gene, has a size of 0.7 m, and is the smallest and, so far, the first radiation-induced intercalary translocation identified in wheat.by R. Apples  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号