首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Role of timer and sizer in regulation of Chlamydomonas cell cycle   总被引:1,自引:0,他引:1  
To estimate the role that time and size had in controlling the Chlamydomonas cell cycle, we used a new on-chip single-cell microcultivation system, which involved the direct observation of single cells captured in microchambers made on a thin glass slide. The dependence of the pattern of energy supply for cells on its cell cycle was examined through a series of different intensities of continuous illumination in a minimal medium, and we found that cell division occurred when cells reached the critical size, which was 2.2 times larger than that of the newly created cells. When illumination stopped before cells reached the critical size, even though growth had stopped, they continued dividing during the delay time, which was shorter when cells were larger. With re-illumination after darkness, cells began to grow again and the timing of cell division was again controlled by the critical size. This indicates that the co-existence of two cell cycle regulation mechanisms and the sizer mechanism had a stronger influence than the timer.  相似文献   

3.
D Lloyd  E I Volkov 《Bio Systems》1990,23(4):305-310
Control of the timing of cell division is considered to result from a relaxation cell cycle oscillator: this has one slow and one rapid component and obeys a system of two ordinary differential equations. Interactions of the slow component with an ultradian oscillator leads to quantization of cell cycle times when the free parameters of the cell cycle oscillator are chosen close to its bifurcation point. This model fits the experimental results previously reported.  相似文献   

4.
5.
Some key elements are common to two fundamental periodic regulatory processes; the circadian cycle and the cell cycle. Underlying mechanisms of coordination between the two processes are critical for proper cellular functioning and physiology. Disruption in the mechanisms of one process may affect the role of other that may direct critical physiological changes and may cause severe diseases like cancer, etc. More or less persuasive evidences evolve from the breast cancer research. In this mini review, we highlighted the molecular coordination’s of the elements of circadian cycle and the cell cycle and their altered expressions associated with the genesis and progression of breast cancer.  相似文献   

6.
The existence of families of cell cycle regulators reflects the need by a developing organism to precisely control proliferation of its cells and also suggests that family members may play redundant roles. Recent advances have shown redundancy to be a theme in development.  相似文献   

7.
The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.  相似文献   

8.
In search of the "hair cycle clock": a guided tour   总被引:15,自引:0,他引:15  
The hair follicle, a unique characteristic of mammals, represents a stem cell-rich, prototypic neuroectodermal-mesodermal interaction system. This factory for pigmented epithelial fibers is unique in that it is the only organ in the mammalian body which, for its entire lifetime, undergoes cyclic transformations from stages of rapid growth (anagen) to apoptosis-driven regression (catagen) and back to anagen, via an interspersed period of relative quiescence (telogen). While it is undisputed that the biological "clock" that drives hair follicle cycling resides in the hair follicle itself, the molecular nature of the underlying oscillator system remains to be clarified. To meet this challenge is of profound general interest, since numerous key problems of modern biology can be studied exemplarily in this versatile model system. It is also clinically important, since the vast majority of patients with hair growth disorders suffers from an undesired alteration of hair follicle cycling. Here, we sketch basic background information and key concepts that one needs to keep in mind when exploring the enigmatic "hair cycle clock"(HCC), and summarize competing models of the HCC. We invite the reader on a very subjective guided tour, which focuses on our own trials, errors, and findings toward the distant goal of unravelling one of the most fascinating mysteries of biology: Why does the hair follicle cycle at all? How does it do it? What are the key players in the underlying molecular controls? Attempting to offer at least some meaningful answers, we share our prejudices and perspectives, and define crucial open questions.  相似文献   

9.
The active sites of many enzymes are very close to the N-terminus of an α-helix. The helix dipole has been postulated to enhance the binding of anions and speed charge relays in catalysis. We present electrostatic potential maps of α-helices of various lengths using a point charge model. We show that the potential field of the helix can be mimicked by two equal and opposite charges, one at each terminus. The magnitude of these equivalent charges reaches its limiting value of ± 0.2 to 0.3 electron at a helix length of approximately 7–10 residues. We also comment on the relative importance of the helix dipole to that of ionized residues in determining the electrostatics of a protein and discuss what consequences this has for enzymology.  相似文献   

10.
Changes in membrane potential during the cell cycle   总被引:4,自引:0,他引:4  
The membrane potential of isolated synchronized Chinese hamster lung cells (V79) has been determined as a function of their position in the cell cycle. During G 1 the cells exhibit a low but increasing membrane potential which rises sharply at the onset of the S phase. The elevated membrane potential is maintained throughout S and G 2 and declines again when the cells enter mitosis. Membrane potentials in an unsynchronized culture, which was recorded from both mitotic and interphase cells physically associated in groups and clusters, were similar to the plateau level obtained during S and G 2 in isolated synchronized cells, and exhibited little variation. It is concluded that although the membrane potential of isolated cells fluctuates during the cell cycle, it plays no causal role as a regulator of mitotic activity.  相似文献   

11.
12.
The Drosophila circadian network is a seasonal timer   总被引:4,自引:0,他引:4  
Previous work in Drosophila has defined two populations of circadian brain neurons, morning cells (M-cells) and evening cells (E-cells), both of which keep circadian time and regulate morning and evening activity, respectively. It has long been speculated that a multiple oscillator circadian network in animals underlies the behavioral and physiological pattern variability caused by seasonal fluctuations of photoperiod. We have manipulated separately the circadian photoentrainment pathway within E- and M-cells and show that E-cells process light information and function as master clocks in the presence of light. M-cells in contrast need darkness to cycle autonomously and dominate the network. The results indicate that the network switches control between these two centers as a function of photoperiod. Together with the different entraining properties of the two clock centers, the results suggest that the functional organization of the network underlies the behavioral adjustment to variations in daylength and season.  相似文献   

13.
The quail's eye: a biological clock   总被引:1,自引:0,他引:1  
The site (intraocular vs. extraocular) of the biological clock driving a rhythm in melatonin content in the eyes of Japanese quail was investigated by alternately patching the left and right eyes of individual birds, otherwise held in constant light, for 12-hr periods. This patching protocol, therefore, exposed each eye to a light-dark cycle (LD 12:12) 180 degrees (12 hr) out of phase with the LD cycle experienced by the other eye. The optic nerves to both eyes were transected prior to initiating the patching protocol. The ocular melatonin rhythm (OMR) of the left eyes of quail could be entrained by this procedure 180 degrees out of phase with the rhythm expressed by the right eyes. Since optic nerve section would have deprived any putative extraocular clocks of photic entrainment information, the results show conclusively that the clock driving the OMR is located within the eye itself. In addition, the OMR of Japanese quail is remarkably unaffected by removing two potential neural inputs to the eye (sympathetic innervation from the superior cervical ganglia, and input from the isthmo-optic nucleus of the midbrain); this suggests that these inputs are not required to maintain the OMR. Finally, the clock driving the OMR of one eye does not appear to be coupled to the clock driving the OMR in the other eye, since permanently patching one eye abolished the ability of the patched eye to re-entrain to an 8-hr shift in the phase of an LD 12:12 cycle, whereas the exposed eye rapidly re-entrained to the phase-shifted cycle.  相似文献   

14.
15.
16.
Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P < 0.0001) in CLL patients as compared to healthy controls. When expression of these genes was compared between shift-workers and non-shift-workers within the CLL group, the expression was found more aberrant in shift-workers as compared to non-shift-workers. However, this difference was found statistically significant for Myc and Cyclin D1 only (P < 0.05). Serum melatonin levels were found significantly low (P < 0.0001) in CLL subjects as compared to healthy controls whereas melatonin levels were found still lower in shift-workers as compared to non-shift-workers within CLL group (P < 0.01). Our results suggest that aberrant expression of circadian clock genes can lead to aberrant expression of their downstream targets that are involved in cell proliferation and apoptosis and hence may result in manifestation of CLL. Moreover, shift-work and low melatonin levels may also contribute in etiology of CLL by further perturbing of circadian clock.  相似文献   

17.
The recently discovered structural similarities between the archaeal Orc1/Cdc6 and bacterial DnaA initiator proteins for chromosome replication have exciting implications for cell cycle regulation. Together with current attempts to identify archaeal chromosome replication origins, the information is likely to yield fundamental insights into replication control in both archaea and eukaryotes within the near future. Several proteins that affect, or are likely to affect, chromatin structure and genome segregation in archaea have been described recently, including Sph1 and 2, ScpA and B, Sir2, Alba and Rio1p. Important insights into the properties of the MinD and FtsZ cell division proteins, and of putative cytoskeletal elements, have recently been gained in bacteria. As these proteins also are present among archaea, it is likely that the new information will also be essential for understanding archaeal genome segregation and cell division. A series of interesting cell cycle issues has been brought to light through the discovery of the novel Nanoarchaeota phylum, and these are outlined briefly. Exciting areas for extended cell cycle investigations of archaea are identified, including termination of chromosome replication, application of in situ cytological techniques for localization of cell cycle proteins and the regulatory roles of GTP-binding proteins and small RNAs.  相似文献   

18.
19.
Several new molecular components of the circadian clocks of animals, fungi, and bacteria have been unveiled in the past two years. Enough parts are now identified to indicate that there is more than one way to build a biological clock, although there are parallels in the cycling molecular events among disparate groups of organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号