首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Branching morphogenesis in the mammary gland involves focal regions of cell proliferation, the terminal and lateral ductal buds, that exist simultaneously with extensive regions of differentiated ducts in which budding and growth are actively suppressed. Exogenous transforming growth factor-beta 1 (TGF-beta 1) has previously been shown to locally inhibit the formation and growth of mammary ductal buds. Here we report that endogenous TGF-beta 1, produced by epithelial and stromal mammary cells, forms complexes with extracellular matrix (ECM) molecules surrounding those ductal structures in which budding is inhibited. The largest amounts of immunostainable TGF-beta 1 are found in mature periductal ECM, and the least in newly synthesized ECM. In all areas of active ductal growth, where DNA-synthetic buds were forming new ductal branches, we found a highly focal loss of TGF-beta 1 from the periductal ECM at the bud-forming region of the duct. When growth of the new buds terminated, the structures again became associated with TGF-beta-rich ECM. These findings indicate that ECM must reach a certain state of maturity before it becomes associated with TGF-beta 1 and that TGF-beta 1 can be depleted selectively from the periductal ECM at focal growth points. A different type of growth point, the alveolar (secretory) buds, was also investigated. These buds are known not to be inhibited by exogenous TGF-beta 1, and we found them not to be associated with changes in ECM-bound TGF-beta 1. Our results support the concept that the periductal ECM acts as a reservoir for TGF-beta 1 that functions to maintain an open pattern of mammary branching by inhibiting ductal, but not alveolar, bud formation.  相似文献   

3.
In the developing rat mammary gland, terminal end buds (TEBs), lateral buds and alveolar buds represent the major sites of morphogenetic activity and cellular differentiation. The morphology and cellular composition of these buds from 20-to 22-day-old rats and cycling rats have been studied by immunocytochemical and electron microscopic techniques. The mammary buds are composed of a heterogeneous collection of cells including epithelial and myoepithelial cells, irregular loosely adherent cells, and occasional large clear cells. The irregular, loosely packed cells or cap cells are mainly situated around the periphery of the TEBs and lateral buds. "Chains" of irregularly shaped cells also extend from the peripheral cap cell layer to the center of the TEB; and, where they converge on lumina, they display microvilli and junctional complexes. At the tips of the end buds, the cap cells are of undifferentiated appearance; however, similar cells situated toward the subtending mammary ducts show a gradation in ultrastructure to that of myoepithelial cells. This change is accompanied by an increase in the amounts of immunoreactive myosin and keratin seen within the cells and a 200-fold increase in the thickness of the basement membrane. In contrast, the peripheral cells of the alveolar buds are more closely packed, contain a greater number of myofilaments, and show increased staining with antisera to myosin. We suggest that the undifferentiated cap cells do not represent a discrete cell type, since they show transitional forms to myoepithelial cells within the subtending mammary ducts, and that the tendency toward the myoepithelial phenotype is predominant in the more differentiated structures, the alveolar buds.  相似文献   

4.
Protein kinase C (PKC) is involved in signaling that modulates the proliferation and differentiation of many cell types, including mammary epithelial cells. In addition, changes in PKC expression or activity have been observed during mammary carcinogenesis. In order to examine the involvement of specific PKC isoforms during normal mammary gland development, the expression and localization of PKCs alpha, delta, epsilon and zeta were examined during puberty, pregnancy, lactation, and involution. By immunoblot analysis, expression of PKC alpha, delta, epsilon and zeta proteins was increased in mammary epithelial organoids during the transition from puberty to pregnancy. In mammary gland frozen sections, PKCs alpha, delta, epsilon and zeta were stained in the luminal epithelium and myoepithelium, in varying isoform-and developmental stage-specific locations. PKC alpha was found in a punctate apical localization in the luminal epithelium during pregnancy. During lactation, PKC epsilon was present in the nucleus, and PKC zeta was concentrated in the subapical region of the luminal epithelium. Additionally, marked staining for PKCs alpha, delta, epsilon, and zeta was observed in the myoepithelial cells at the base of ducts and alveoli. This basal ductal and alveolar staining differed in intensity in a developmentally-specific fashion. During most time points (virgin, pregnant, lactating, and early involution), myoepithelial cells of the duct were more intensely stained than those lining the alveoli for PKCs alpha, delta, epsilon and zeta. During late involution (days 9-12), the preferential staining of ducts was lost or reversed, and the myoepithelial cells lining the regressing alveolar structures stained equally (PKCs epsilon and zeta) or more intensely (PKCs alpha and delta), coincident with the thickening of the myoepithelial cells surrounding the regressing alveoli. The increased PKC isoform staining at the base of alveoli during involution suggests that alveolar regression may be influenced by alterations in signaling in the alveolar myoepithelium.  相似文献   

5.
6.
PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.  相似文献   

7.
After cessation of lactation, the mammary gland undergoes involution, which is characterized by a massive epithelial cell death and proteolytic degradation of the extracellular matrix. Whereas the expression patterns and also the function of TGF-beta isoforms during mammary gland branching morphogenesis and lactation are well understood, their expression during postlactational involution and therefore a possible role in this process is poorly known. In this study we show that TGF-beta3 expression is dramatically induced (>fivefold) during mouse mammary gland involution when compared to that of virgin mouse, reaching a maximal expression level at day 4 after weaning. In contrast, other TGF-beta isoforms do not display significant increase in expression during involution (TGF-beta1, 1.3-fold and TGF-beta2, <1.5-fold) when compared to that of virgin or lactating mice. During mammary gland involution, TGF-beta3 is expressed in the epithelial layer and particularly in myoepithelial cells. A comparison of the kinetics of TGF-beta3 expression to that of programmed cell death and degradation of the basement membrane suggests that TGF-beta3 functions in the remodeling events of the extracellular matrix during the second stage of involution.  相似文献   

8.
TGF-beta 1, implanted into growing mouse mammary glands, was previously shown to inhibit ductal growth in an apparently normal and fully reversible manner. In this report we extend these findings to show that TGF-beta 1 inhibition is highly specific. In pregnant or hormone-treated mice, doses of TGF-beta 1 that were capable of fully inhibiting ductal elongation had little effect on the proliferation of lobuloalveolar structures. Additionally, the inhibitory action of TGF-beta 1 on ducts is epithelium-specific, resulting in cessation of DNA synthesis in the rapidly proliferating epithelium of mammary end buds, but does not inhibit DNA synthesis in the stroma surrounding the end buds. At the cellular level, transplant studies showed that TGF-beta 1 inhibited the regeneration of mammary ductal cells when implanted into mammary gland-free fat pads by suppressing the formation of new end buds, without inhibiting maintenance DNA synthesis in ductal lumenal epithelium; this observation indicates the potential of TGF-beta 1 to maintain patterning by suppressing adventitious lateral branching. The time-course of TGF-beta 1 inhibition of end buds was rapid, with cessation of DNA synthesis by 12 hr, followed by loss of the stem cell (cap cell) layer. The question of glandular exposure to TGF-beta 1 administered in EVAc implants was also investigated. Incorporation of TGF-beta 1 into EVAc was found not to degrade the hormone, while the release kinetics of the ligand from implants, its retention in the gland, and the demonstrable zone of exposure were consistent with observed inhibitory effects. These results support the hypothesis that TGF-beta 1 is a natural regulator of mammary ductal growth.  相似文献   

9.
Exogenous transforming growth factor beta (TGF-beta 1) was shown in earlier studies to reversibly inhibit mouse mammary ductal growth. Using small plastic implants to treat regions of developing mammary glands in situ, we now report that TGF-beta 1 growth inhibition is associated with an ectopic accumulation of type I collagen messenger RNA and protein, as well as the glycosaminoglycan, chondroitin sulfate. Both macromolecules are normal components of the ductal extracellular matrix, which, under the influence of exogenous TGF-beta 1, became unusually concentrated immediately adjacent to the epithelial cells at the tip of the ductal growth points, the end buds. Stimulation of extracellular matrix was confined to aggregations of connective tissue cells around affected end buds and was not present around the TGF-beta 1 implants themselves, indicating that the matrix effect was epithelium dependent. Ectopic matrix synthesis was specific for TGF-beta 1 insofar as it was absent at ducts treated with other growth inhibitors, or at ducts undergoing normal involution in response to endogenous regulatory processes. These findings are consistent with the matrix-stimulating properties of TGF-beta 1 reported for other systems, but differ in their strict dependence upon epithelium. A possible role for endogenous TGF-beta 1 in modulating a mammary epithelium-stroma interaction is suggested.  相似文献   

10.
11.
To further our understanding of progesterone (P) as an endocrine mammogen, a PR(lacz) knockin mouse was generated in which the endogenous progesterone receptor (PR) promoter directly regulated lacZ reporter expression. The PR(lacz) mouse revealed PR promoter activity was restricted to the epithelial compartment during the prenatal and postnatal stages of mammary gland development. At puberty, PR promoter activity was unexpectedly robust and restricted to the body cells within the terminal end buds and to the luminal epithelial cells in the subtending ducts. In the adult, the preferential localization of PR(lacz) positive cells to the distal regions of ductal side branches provided a cellular context to the recognized mandatory role of P in ductal side-branching, and segregation of these cells from cells that undergo proliferation supported an intraepithelial paracrine mode of action for P in branching morphogenesis. Toward the end of pregnancy, the PR(lacz) mouse disclosed a progressive attenuation in PR promoter activity, supporting the postulate that the preparturient removal of the proliferative signal of P is a prerequisite for the emergence of a functional lactating mammary gland. The data suggest that PR expression before pregnancy is to ensure the specification and spatial organization of ductal and alveolar progenitor cell lineages, whereas abrogation of PR expression before lactation is required to enable terminal differentiation of the mammary gland.  相似文献   

12.
The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.  相似文献   

13.
The matrix-degrading metalloproteinases stromelysin-1, stromelysin-3, and gelatinase A are expressed during ductal branching morphogenesis of the murine mammary gland. Stromelysin-1 expression in particular correlates with ductal elongation, and in situ hybridization and three-dimensional reconstruction studies revealed that stromelysin-1 mRNA was concentrated in stromal fibroblasts along the length of advancing ducts. Transgenic mice expressing an activated form of stromelysin-1 under the control of the MMTV promoter/enhancer exhibited inappropriate alveolar development in virgin females. Ultrastructural analysis demonstrated that the basement membrane underlying epithelial and myoepithelial cells was amorphous and discontinuous compared with the highly ordered basal lamina in control mammary glands. Transgenic mammary glands had at least a twofold increase in the number of cells/unit area and a 1.4-fold increase in the percent of cycling cells by 13 wk of age compared with nontransgenic littermates. In addition, transgenic glands expressed beta-casein mRNA, but not protein, and resembled the proliferative and differentiated state of an animal between 8 and 10 days pregnant. An analysis of metalloproteinase expression in the glands of normal pregnant females demonstrated that the same matrix metalloproteinase family members, including stromelysin-1, were expressed in connective tissue cells surrounding epithelial clusters during the time of lobuloalveolar development. These results suggest that metalloproteinases may assist in remodeling ECM during normal ductal and alveolar branching morphogenesis, and that disruption of the basement membrane by an activated metalloproteinase can affect basic cellular processes of proliferation and differentiation.  相似文献   

14.
Growth and morphogenesis in the mammary gland depend on locally derived growth factors such as those in the epidermal growth factor (EGF) superfamily. Cripto-1 (CR-1, human; Cr-1, mouse)--also known as teratocarcinoma-derived growth factor-1--is a novel EGF-related protein that induces branching morphogenesis in mammary epithelial cells both in vitro and in vivo and inhibits the expression of various milk proteins. In the mouse, Cr-1 is expressed in the growing terminal end buds in the virgin mouse mammary gland and expression increases during pregnancy and lactation. Cr-1/CR-1 is overexpressed in mouse and human mammary tumors and inappropriate overexpression of Cr-1 in mouse mammary epithelial cells can lead to the clonal expansion of ductal hyperplasias. Taken together, this evidence suggests that Cr-1/CR-1 performs a role in normal mammary gland development and that it might contribute to the early stages of mouse mammary tumorigenesis and the pathobiology of human breast cancer.  相似文献   

15.
Elongation of mammary ducts in the immature mouse takes place as a result of rapid growth in end buds. These structures proliferate at the apex of elongating ducts and are responsible for penetration of the surrounding adipose stroma; by turning and branching, end buds give rise to the characteristic open pattern of the mammary ductal tree. We have used a variety of techniques to determine the cellular and structural basis for certain of these end bud activities, and now report the following. (1) The end bud tip is covered with a monolayer of epithelium, the "cap cells," which are characterized by a relative lack of intercellular junctions and other specialized features. (2) The cap cell layer extends along the end bud flank and neck regions where it is continuous with the myoepithelium which surrounds the subtending mature duct. A linear sequence of differentiative changes occur in the cap cells in this region as they progressively alter in shape and accumulate the cytological features of mature myoepithelium. Cap cells may therefore be defined as a stem cell population providing new myoepithelial cells for ductal morphogenesis and elongation. (3) Differentiation of cap cells into myoepithelium is associated with conspicuous changes in the basal lamina. At the tip, cap cells form a 104-nm lamina similar to that described in expanding mammary alveoli and in embryonic tissues. Along the end bud flanks the basal lamina is raised from the cell surface and extensively folded, resulting in a greatly thickened lamina, measuring as much as 1.4 microns. At the surface of the subtending ducts the lamina becomes structurally simplified and resembles that at the tip, but has a significantly greater thickness, averaging 130 nm. (4) The codifferentiation of myoepithelium and its basement membrane is associated with changes in the surrounding stroma. Undifferentiated mesenchymal-like cells attach to the surface of the basal lamina in the midportion of the end buds and become increasingly numerous in the neck region, forming a monolayer over the myoepithelial basal lamina. These stromal cells progressively differentiated into fibrocytes which participate in collagen fibrillogenesis and give rise to the fibrous components of the stroma surrounding the mature duct.  相似文献   

16.
Development of the mammary gland requires the coordinated action of proteolytic enzymes during two phases of remodelling. Firstly, new ducts and side-branches thereof need to be established during pregnancy to generate an extensive ductal tree allowing the secretion and transport of milk. A second wave of remodelling occurs during mammary involution after weaning. We have analysed the role of the cell surface protease aminopeptidase N (Anpep, APN, CD13) during these processes using Anpep deficient and Anpep over-expressing mice. We find that APN deficiency significantly delays mammary gland morphogenesis during gestation. The defect is characterised by a reduction in alveolar buds and duct branching at mid-pregnancy. Conversely over-expression of Anpep leads to accelerated ductal development. This indicates that Anpep plays a critical role in the proteolytic remodelling of mammary tissue during adult mammary development.  相似文献   

17.
Abstract. The initial phase of growth of the parenchymal component of the mouse mammary gland is ductal clongation, which is mainly accomplished by proliferating cells in a specialized structure termed end bud. End buds are composed of multiple layers of epithelial cells (so called body cells) which are capped by a single layer of morphologically unique cells termed cap cells.
We sought to examine the interrelationship between cap cells and other epithelial cell subclasses using a variety of antibodies to different keratin proteins and also antibodies to vimentin, actin and collagen IV. An extensive immunohistochemical characterization of the epithelial components of the developing and differentiating mammary gland demonstrated that cap cells were devoid of any immunohistochemically - detectable keratins but were positive for collagen IV. In contrast, the majority of cells in the end bud along with the luminal epithelial and myoepithelial cells were keratin positive. The body cells of the end bud were the only cells which were positive for antibody to keratin 6, a keratin which previously has been reported to be expressed in proliferating mammary epithelial cells. In addition, estrogen receptor was localized only to epithelial cells of ducts, alvcoli and body cells of end buds, but not to cap cells or myoepithelial cells. We interpret these results to suggest that cap cells are not totpotent stem cells but rather cells specialized in paving the way for ductal elongation as well as serving as precursors to myoepithelial cells.  相似文献   

18.
The cytokine-transforming growth factor beta1 (TGFB1) is implicated in development of the mammary gland through regulation of epithelial cell proliferation and differentiation during puberty and pregnancy. We compared mammary gland morphogenesis in virgin Tgfb1(+/+), Tgfb1(+/-), and Tgfb1(-/-) mice and transplanted Tgfb1(+/+) and Tgfb1(-/-) epithelium to determine the impact of TGFB1 deficiency on development. When mammary gland tissue was evaluated relative to the timing of puberty, invasion through the mammary fat pad of the ductal epithelium progressed similarly, irrespective of genotype, albeit fewer terminal end buds were observed in mammary glands from Tgfb1(-/-) mice. The terminal end buds appeared to be normal morphologically, and a comparable amount of epithelial proliferation was evident. When transplanted into wild-type recipients, however, Tgfb1(-/-) epithelium showed accelerated invasion compared with Tgfb1(+/+) epithelium. This suggests that the normal rate of ductal extension in Tgfb1(-/-) null mutant mice is the net result of impaired endocrine or paracrine support acting to limit the consequences of unrestrained epithelial growth. By adulthood, mammary glands in cycling virgin Tgfb1(-/-) mice were morphologically similar to those in Tgfb1(+/+) and Tgfb1(+/-) animals, with a normal branching pattern, and the tissue differentiated into early alveolar structures in the diestrous phase of the ovarian cycle. Transplanted mammary gland epithelium showed a similar extent of ductal branching and evidence of secretory differentiation of luminal cells in pregnancy. These results reveal two opposing actions of TGFB1 during pubertal mammary gland morphogenesis: autocrine inhibition of epithelial ductal growth, and endocrine or paracrine stimulation of epithelial ductal growth.  相似文献   

19.
The dynamic process of mammary ductal morphogenesis depends on regulated epithelial proliferation and extracellular matrix (ECM) turnover. Epithelial cell-matrix contact closely dictates epithelial proliferation, differentiation, and survival. Despite the fact that tissue inhibitors of metalloproteinases (Timps) regulate ECM turnover, their function in mammary morphogenesis is unknown. We have delineated the spatiotemporal expression of all Timps (Timp-1 to Timp-4) during discrete phases of murine mammary development. Timp mRNAs were abundant in mammary tissue, each displaying differential expression patterns with predominant localization in luminal epithelial cells. Timp-1 mRNA was unique in that its expression was limited to the stage at which epithelial proliferation was high. To assess whether Timp-1 promotes or inhibits epithelial cell proliferation we manipulated mammary Timp-1 levels, genetically and biochemically. Down-regulation of epithelial-derived Timp-1 in transgenic mice, by mouse mammary tumor virus promoter-directed Timp-1 antisense RNA expression, led to augmented ductal expansion and increased number of ducts (P < 0.004). In these transgenics the integrity of basement membrane surrounding epithelial ducts, as visualized by laminin-specific immunostaining, was breached. In contrast to these mice, ductal expansion was markedly attenuated in the proximity of implanted recombinant Timp-1-releasing pellets (rTIMP-1), without an increase in basement membrane deposition around migrating terminal end buds. Epithelial proliferation and apoptosis were measured to determine the basis of altered ductal expansion. Luminal epithelial proliferation was increased by 55% (P < 0.02) in Timp-1-reduced transgenic mammary tissue and, conversely, decreased by 38% (P < 0.02) in terminal end buds by implanted rTIMP-1. Epithelial apoptosis was minimal and remained unaffected by Timp-1 manipulations. We conclude that Timps have an integral function in mammary morphogenesis and that Timp-1 regulates mammary epithelial proliferation in vivo, at least in part by maintaining basement membrane integrity.  相似文献   

20.
p190-B Rho GTPase activating protein is essential for mammary gland development because p190-B deficiency prevents ductal morphogenesis. To investigate the role of p190-B during distinct stages of mammary gland development, tetracycline-regulatable p190-B-overexpressing mice were generated. Short-term induction of p190-B in the developing mammary gland results in abnormal terminal end buds (TEBs) that exhibit aberrant budding off the neck, histological anomalies, and a markedly thickened stroma. Overexpression of p190-B throughout postnatal development results in increased branching, delayed ductal elongation, and disorganization of the ductal tree. Interestingly, overexpression of p190-B during pregnancy results in hyperplastic lesions. Several cellular and molecular alterations detected within the aberrant TEBs may contribute to these phenotypes. Signaling through the IGF pathway is altered, and the myoepithelial cell layer is discontinuous at sites of aberrant budding. An increase in collagen and extensive infiltration of macrophages, which have recently been implicated in branching morphogenesis, is observed in the stroma surrounding the p190-B-overexpressing TEBs. We propose that the stromal response, disruption of the myoepithelial layer, and alterations in IGF signaling in the p190-B-overexpressing mice impact the TEB architecture, leading to disorganization and increased branching of the ductal tree. Moreover, we suggest that alterations in tissue architecture and the adjacent stroma as a consequence of p190-B overexpression during pregnancy leads to loss of growth control and the formation of hyperplasia. These data demonstrate that precise control of p190-B Rho GTPase-activating protein activity is critical for normal branching morphogenesis during mammary gland development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号