首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural studies of the catalytic subunit of the cAMP-dependent protein kinase, both by crystallographic methods and in solution, reveal two conformations. Crystal structures of several other protein kinases have also been solved in the past year. With this combined information we can begin to define mobile domains and subdomains within the conserved catalytic core.  相似文献   

2.
Functions of chloroplastic adenylate kinases in Arabidopsis   总被引:2,自引:0,他引:2  
Adenosine monophosphate kinase (AMK; adenylate kinase) catalyses the reversible formation of ADP by the transfer of one phosphate group from ATP to AMP, thus equilibrating adenylates. The Arabidopsis (Arabidopsis thaliana) genome contains 10 genes with an adenylate/cytidylate kinase signature; seven of these are identified as putative adenylate kinases. Encoded proteins of at least two members of this Arabidopsis adenylate kinase gene family are targeted to plastids. However, when the individual genes are disrupted, the phenotypes of both mutants are strikingly different. Although absence of AMK2 causes only 30% reduction of total adenylate kinase activity in leaves, there is loss of chloroplast integrity leading to small, pale-looking plantlets from embryo to seedling development. In contrast, no phenotype for disruption of the second plastid adenylate kinase was found. From this analysis, we conclude that AMK2 is the major activity for equilibration of adenylates and de novo synthesis of ADP in the plastid stroma.  相似文献   

3.
Adenylate kinases (AK) play a key role in nucleotide signaling processes and energy metabolism by catalyzing the reversible conversion of ATP and AMP to 2 ADP. In the malaria parasite Plasmodium falciparum this reaction is mediated by AK1, AK2, and a GTP:AMP phosphotransferase (GAK). Here, we describe two additional adenylate kinase-like proteins: PfAKLP1, which is homologous to human AK6, and PfAKLP2. Using GFP-fusion proteins and life cell imaging, we demonstrate a cytosolic localization for PfAK1, PfAKLP1, and PfAKLP2, whereas PfGAK is located in the mitochondrion. PfAK2 is located at the parasitophorous vacuole membrane, and this localization is driven by N-myristoylation.

Structured summary of protein interactions

EXP-1 and PfAK2colocalize by fluorescence microscopy (View interaction)PfAK2 and SERPcolocalize by fluorescence microscopy (View interaction)  相似文献   

4.
To correlate the structural features of enzymes to temperature adaptation, we studied psychrophile, mesophile, and thermophile adenylate kinases as model enzymes using bioinformatics and computational tools. Phylogenetic analysis revealed that mesophile and thermophile variants are clustered in one stem of phylogenetic tree and are close to contemporary time, while psychrophile enzyme is more close to their common ancestor. This finding is in good agreement with the process of environmental changes from ice age toward current warm conditions on the earth. We also performed Molecular Dynamics simulation at corresponding temperatures of all enzyme variants including 308, 318, and 328 K. It was found that mesophile enzyme has no distinct deviation of Root Mean Square Deviation (RMSD) and Radius of Gyration (Rg) values from equilibrium states at operating temperature of thermophile enzyme as well as its own optimum temperature. However, psychrophile enzyme undergoes more fluctuations with higher amplitude of change; particularly at 328 K. It was also found that initial increasing of RMSD and Rg for Psychrophile enzyme at all temperatures is occurred gradually; while, the increment of this structural parameters for thermophile enzyme at 328 K is occurred in a highly cooperative and switching manner demonstrating snap structural change of thermophile enzyme in its own temperature. By analysis of Root Mean Square Fluctuation values at different temperatures, we identified two flexible fragments in adenylate kinases so that different dynamic behavior of these regions in mesophile enzyme against operating temperatures of psychrophile and thermophile variants is critical in compensation of flexibility challenges at respective temperatures.  相似文献   

5.
6.
The role of adenylate kinase (AK) as a determinant of K-ATP channel activity in human pancreatic β-cells was investigated. We have identified that two cytosolic isoforms of AK, AK1 and AK5 are expressed in human islets and INS-1 cells. Elevated concentrations of glucose inhibit AK1 expression and AK1 immunoprecipitates with the Kir6.2 subunit of K-ATP. AK activation by ATP + AMP stimulates K-ATP channel activity and this stimulation is abolished by AK inhibitors. We propose that glucose stimulation of β-cells inhibits AK through glycolysis and also through the elevation of diadenosine polyphosphate levels. Glucose-dependent inhibition of AK increases the ATP/ADP ratio in the microenvironment of the K-ATP channel promoting channel closure and insulin secretion. The down-regulation of AK1 expression by hyperglycemia may contribute to the defective coupling of glucose metabolism to K-ATP channel activity in type 2 diabetes.  相似文献   

7.
Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the β-propeller and α/β-hydrolase domains; addition of substrate to preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.  相似文献   

8.
Abstract— The activities and electrophoretic patterns of creatine and adenylate kinases in the mitochondrial and high speed supernatant fractions of adult mouse brain were determined. Approximately 22 per cent of the activities of both kinases is firmly bound to the mitochondria. On acrylamide gel electrophoresis of creatine kinase, in addition to the major band previously described, there were several other bands found. Although present in both the mitochondrial and supernatant fractions these additional protein bands with creatine kinase activity were significantly more intense in the mitochondrial fraction. There was only onesecondary band of adenylate kinase activity in the mitochondrial fraction but additional bands were found in the soluble fraction.  相似文献   

9.
Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK), for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō) simulation of mesophilic AK from E. coli (AKmeso) to simulations of thermophilic AK from Aquifex aeolicus (AKthermo). In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O) ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS) ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A "heated" simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the "corresponding states" hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways.  相似文献   

10.
11.
The crystal structures of adenylate kinases from the thermophile Methanococcus thermolithotrophicus and the mesophile Methanococcus voltae have been solved to resolutions of 2.8A and 2.5A, respectively. The structures of the enzymes are similar to that of the adenylate kinase from archaeal Sulfolobus acidocaldarius in many respects such as the extended central beta-sheets, the short LID domain, and the trimeric state. The analysis of unligated and AMP-bound subunits of M.voltae suggests that movements of two mobile domains are not independent of each other. The methanococcal structures are examined with respect to their lack of the "invariant" Lys residue within the phosphate-binding loop, and two Arg residues in the LID domain are proposed as substituting residues based on their conservation among archaeal adenylate kinases and mobility within the structures. Since S.acidocaldarius adenylate kinase has the invariant Lys residue as well as the two Arg residues, its phosphate-binding loop is examined and compared with those of other adenylate kinases. On the basis of the comparison and other available biochemical data, the unusual conformation of the Lys residue in S.acidocaldarius adenylate kinase is explained. Despite possessing 78% sequence identity, the methanococcal enzymes exhibit significantly different thermal stabilities. To study the determinants of thermostability, several structural features including salt-links, hydrogen bonds, packing density, surface to volume ratio and buried surface area are compared between the enzymes. From their difference in apolar buried surface area, hydrophobic interaction is proposed to be a basis for the disparate thermostabilities, and the corresponding free energy difference is also estimated. Results of previous mutational studies are interpreted in terms of the crystal structures, and support the importance of hydrophobic interactions in thermostability.  相似文献   

12.
1. Procedures are given for the syntheses of alpha,omega-dinucleoside 5'-polyphosphates as inhibitors of adenylate kinases. The following order for the ability of inhibiting pig muscle adenylate kinase was observed: Ap5A greater than 1:N6-etheno-Ap5A greater than Ap6A greater than Gp5A greater than Ap4A greater than Up5A. The synthesis of adenosine tetraphosphate, the starting material for Ap5A, is also described. 2. One molecule of pig muscle adenylate kinase binds one molecule of Ap5A. The difference spectrum of Ap5A-adenylate kinase with its maximum of 5050 M-1 - cm-1 at 271 nm, as well as the fluorescence properties of 1:N6-etheno-Ap5A can be used for kinetic and binding studies. 3. The specific binding of the negatively charged Ap5A was exploited in the preparation of human muscle adenylate kinase. The enzyme was purified to homogeneity with an overall yield of 65%, the absolute value being 70 mg per kg of muscle. 4. The effect of Ap5A on adenylate kinase in extracts of various cells and cell organelles was tested. A ratio of 1:50 (mol/mol) for Ap5A to other nucleotides was used for suppressing the adenylate kinase activity in extracts of mammalian and insect skeletal muscel, of human erythrocytes and of Staphylococcus aureus. A ratio of 1:5 was found to be necessary for the adenylate kinase from tobacco leaves and spinach chloroplasts, and a ratio of 2:1 was needed for suppressing the adenylate kinase from bovine liver mitochondria, human kidney homogenate and from Escherichia coli. Ap5A appears not to be metabolized in any of the above extracts. These results indicate that Ap5A can be used for evaluating the contribution of adenylate kinase to the production of ATP fro ADP in energy-transducing systems. 5. Contaminating adenylate kinase can be inhibited by a concentration of Ap5A which does not interfere in the study of many (phospho)kinases and ATPases. The applications of Ap5A in the assay for nucleoside diphosphokinase and in the study of mechanical and biochemical properties of contractile proteins are representative examples. The use of Ap5A makes it possible to study the effect of ADP per se in such systems. 6. Sepharose-bound Ap5A was used for removing traces of adenylate kinase from samples of myosin and creatine kinase. 7. In the presence of Ap5A the activity of creatine kinase was measured in hemolytic serum of venous blood, in plasma of capillary blood and in samples of whole blood after complete hemolysis had been induced. The clinical significance of these findings are shown for cases of myocardial infarction and muscular dystrophy.  相似文献   

13.
The complete amino acid sequence of adenylate kinase (MgATP + AMP in equilibrium MgADP + ADP) from Paracoccus denitrificans has been determined. 1. The S-[14C]carboxymethylated protein was cleaved with clostripain, cyanogen bromide and endoproteinase Lys-C; 18, 9 and 6 fragments, respectively, were analyzed. Some of these peptides were further degraded by trypsin, Staphylococcus aureus V8 protease and carboxypeptidases A and B. The fragments were separated by HPLC and sequenced with a gas-phase sequencer. 2. Sequencing the whole unblocked protein yielded the N-terminal region. The C-terminal residues were obtained by carboxypeptidase-Y digestion in agreement with the sequence of tryptic and cyanogen bromide peptides. 3. The final sequence shows 217 amino acids with Mr = 23,609 and contains one free cysteine and a disulfide bond. 4. The comparison of the P. denitrificans sequence with other known adenylate kinases shows highest similarity with the structurally known Escherichia coli enzyme (47%). The only and catalytically relevant His in the paracoccal enzyme is close to the site of binding of adenosine(5')pentaphospho(5')adenosine to E. coli adenylate kinase. The disulfide bridge is located in the 30-residue segment, which is indicative of the large variants and is absent in cytosolic adenylate kinase. The similarity to the mitochondrial intermembrane-space and matrix adenylate kinase isoenzymes is only 40% and 30%, respectively, while 39% of redidues are identical to those of yeast cytosolic adenylate kinase. Therefore, adenylate kinases do not support the hypothesis of a close relationship between Paracoccus and mitochondria.  相似文献   

14.
The recent finding that Bacillus stearothermophilus adenylate kinase contains a zinc atom coordinated to four cysteines prompted us to investigate the metal-binding properties of the enzyme from various bacteria. We conclude that zinc was present only in adenylate kinase from gram-positive species and that this property is correlated with the presence of three or four Cys residues in the sequence Cys-X2-Cys-X16-Cys-X2-Cys/Asp, in which X stands for different amino acid residues.  相似文献   

15.
A new system for measurement of affinities of adenylate kinases (AK) for substrates and inhibitors is presented. This system is based on the use of the fluorescent ligand alpha,omega-di[(3' or 2')-O-(N-methylanthraniloyl)adenosine-5'] pentaphosphate (mAP5Am), which is an analogue of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A). It allows the determination of dissociation constants for any ligand in the range of 1 x 10(-9) to 5 x 10(-2) M. Affinities for different bisubstrate inhibitors (AP4A, AP5A, AP6A) and substrates (AMP, ADP, ATP, GTP) were determined in the presence and absence of magnesium. An analysis of the binding of bisubstrate inhibitors is proposed and applied to these data. The techniques are used to describe the properties of a mutant enzyme with Gln-28----His (Q28H) prepared by site-directed mutagenesis in comparison to those of wild-type AK from Escherichia coli. This newly introduced histidine is already present in most other adenylate kinases and was regarded to be important or even essential for the catalytic reaction of AK. Temperature denaturation experiments indicate that the mutant enzyme has the same thermal stability as the wild-type enzyme and, as NMR studies indicate, also a very similar structure. However, steady-state catalytic studies and binding experiments showed that the affinities for substrates and inhibitors are elevated from 3-fold (AMP) to 5-fold (ATP) to 15-fold (AP5A) compared to those of the wild-type enzyme. Together with the results obtained by Tian et al. [Tian, G., Sanders, C. R., Kishi, F., Nakazawa, A., & Tsai, M.-D. (1988) Biochemistry 27, 5544-5552] on the effect of replacement of the conserved His-36 in the cytosolic AK (AK1) from chicken by glutamine and asparagine, this shows that residues 28 of AK from E. coli (AKec) and 36 of AK1 are situated in a comparable environment and are not essential for catalytic activity.  相似文献   

16.
Energy metabolism in gastrobiopsy specimens of the antral and corpus mucosa, treated with saponin to permeabilize the cells, was studied in patients with gastric diseases. The results show twice lower oxidative capacity in the antral mucosa than in the corpus mucosa and the relative deficiency of antral mitochondria in complex I. The mucosal cells expressed mitochondrial and cytosolic isoforms of creatine kinase and adenylate kinase (AK). Creatine (20 mM) and AMP (2 mM) markedly stimulated mitochondrial respiration in the presence of submaximal ADP or ATP concentrations, and creatine reduced apparent Km for ADP in stimulation of respiration, which indicates the functional coupling of mitochondrial kinases to oxidative phosphorylation. Addition of exogenous cytochrome c increased ADP-dependent respiration, and the large-scale cytochrome c effect (>or=20%) was associated with suppressed stimulation of respiration by creatine and AMP in the mucosal preparations. These results point to the impaired mitochondrial outer membrane, probably attributed to the pathogenic effects of Helicobacter pylori. Compared with the corpus mucosa, the antral mucosa exhibited greater sensitivity to such type of injury as the prevalence of the large-scale cytochrome c effect was twice higher among the latter specimens. Active chronic gastritis was associated with decreased respiratory capacity of the corpus mucosa but with its increase in the antral mucosa. In conclusion, human gastric mucosal cells express the mitochondrial and cytosolic isoforms of CK and AK participating in intracellular energy transfer systems. Gastric mucosa disease is associated with the altered functions of these systems and oxidative phosphorylation.  相似文献   

17.
The adk gene from Bacillus stearothermophilus was cloned and overexpressed in Escherichia coli under the control of the lac promoter. The primary structure of B. stearothermophilus adenylate kinase exhibited 76% identity with the enzyme from Bacillus subtilis, 60% identity with the enzyme from Lactococcus lactis, and 42% identity with the enzyme from E. coli. The most striking property of the adenylate kinase from B. stearothermophilus is the presence of a structural zinc atom bound to four cysteines in a zinc finger-like fashion. The ability to coordinate zinc is predicted also for a number of other isoforms of bacterial adenylate kinases. Furthermore, the tightly bound metal ion contributes to the high thermodynamic stability of adenylate kinase from B. stearothermophilus.  相似文献   

18.
Differences in expression profiles, substrate specificities, kinetic properties and subcellular localization among the AK (adenylate kinase) isoenzymes have been shown to be important for maintaining a proper adenine nucleotide composition for many different cell functions. In the present study, human AK7 was characterized and its substrate specificity, kinetic properties and subcellular localization determined. In addition, a novel member of the human AK family, with two functional domains, was identified and characterized and assigned the name AK8. AK8 is the second known human AK with two complete and active AK domains within its polypeptide chain, a feature that has previously been shown for AK5. The full-length AK8, as well as its two domains AK8p1 and AK8p2, all showed similar AK enzyme activity. AK7, full-length AK8, AK8p1 and AK8p2 phosphorylated AMP, CMP, dAMP and dCMP with ATP as the phosphate donor, and also AMP, CMP and dCMP with GTP as the phosphate donor. Both AK7 and full-length AK8 showed highest affinity for AMP with ATP as the phosphate donor, and proved to be more efficient in AMP phosphorylation as compared with the major cytosolic isoform AK1. Expression of the proteins fused with green fluorescent protein demonstrated a cytosolic localization for both AK7 and AK8.  相似文献   

19.
Adenylate kinases (ADKs) from four closely related methanogenic members of the Archaea (the mesophile Methanococcus voltae (MVO), the thermopile Methanococcus thermolithotrophicus (MTH), and the extreme thermopiles Methanococcus igneus (MIG) and Methanococcus jannaschii (MJA)) were characterized for their resistance to thermal denaturation. Despite possessing between 68 and 81% sequence identity, the methanococcal ADKs significantly differed in their stability against thermal denaturation, with melting points ranging from 69 to 103 degrees C. The high sequence identity between these organisms allowed regions of the MVO and MJA ADKs to be exchanged, producing chimeric ADKs with significantly altered thermal stability. Up to a 20 degrees C increase or decrease in stability was achieved for chimeric ADKs, whereas 88% of the original protein sequence was maintained. Based on our previous structural modeling studies, we conclude that cooperative interactions within the hydrophobic protein core play an integral role in determining the differences in structural stability observed between the methanococcal ADKs. From comparisons of the effects of temperature on protein unfolding and optimal enzymatic activity, we also conclude that thermostability and enzymatic temperature optima are influenced differently by molecular modifications and thus that the protein flexibility required for activity and stability, respectively, is not unconditionally linked within the methanococcal ADKs.  相似文献   

20.
The crystal structures of adenylate kinases from the psychrophile Bacillus globisporus and the mesophile Bacillus subtilis have been solved and compared with that from the thermophile Bacillus stearothermophilus. This is the first example we know of where a trio of protein structures has been solved that have the same number of amino acids and a high level of identity (66-74%) and yet come from organisms with different operating temperatures. The enzymes were characterized for their own thermal denaturation and inactivation, and they exhibited the same temperature preferences as their source organisms. The structures of the three highly homologous, dynamic proteins with different temperature-activity profiles provide an opportunity to explore a molecular mechanism of cold and heat adaptation. Their analysis suggests that the maintenance of the balance between stability and flexibility is crucial for proteins to function at their environmental temperatures, and it is achieved by the modification of intramolecular interactions in the process of temperature adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号