首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a sub-nanometer resolution cryo-electron microscopy (cryoEM) structural analysis of an adenoviral vector, Ad35F, comprised of an adenovirus type 5 (Ad5) capsid pseudo-typed with an Ad35 fiber. This vector transduces human hematopoietic cells via association of its fiber protein with CD46, a member of the complement regulatory protein family. Major advances in data acquisition and image processing allowed a significant improvement in resolution compared to earlier structures. Analysis of the cryoEM density was enhanced by docking the crystal structures of both the hexon and penton base capsid proteins. CryoEM density was observed for hexon residues missing from the crystal structure that include hypervariable regions and the epitope of a neutralizing monoclonal antibody. Within the penton base, density was observed for the integrin-binding RGD loop missing from the crystal structure and for the flexible beta ribbon of the variable loop on the side of the penton base. The Ad35 fiber is flexible, consistent with the sequence insert in the third beta-spiral repeat. On the inner capsid surface density is revealed at the base of the hexons and below the penton base. A revised model is presented for protein IX within the virion. Well-defined density was assigned to a conserved domain in the N terminus of protein IX required for incorporation into the virion. For the C-terminal domain of protein IX two alternate conformations are proposed, either binding on the capsid surface or extending away from the capsid. This model is consistent with the tolerance of the C terminus for inserted ligands and its potential use in vector retargeting. This structural study increases our knowledge of Ad capsid assembly, antibody neutralization mechanisms, and may aid further improvements in gene delivery to important human cell types.  相似文献   

2.
We report the revised crystal structure of a pseudo-typed human adenovirus at 3.8-Å resolution that is consistent with the atomic models of minor proteins determined by cryo-electron microscopy. The diffraction data from multiple crystals were rescaled and merged to increase the data completeness. The densities for the minor proteins were initially identified in the phase-refined omit maps that were further improved by the phases from docked poly-alanine models to build atomic structures. While the trimeric fiber molecules are disordered due to flexibility and imposition of 5-fold symmetry, the remaining major capsid proteins hexon and penton base are clearly ordered, with the exception of hypervariable region 1 of hexons, the RGD containing loop, and the N-termini of the penton base. The exterior minor protein IX together with the interior minor proteins IIIa and VIII stabilizes the adenovirus virion. A segment of N-terminal pro-peptide of VI is found in the interior cavities of peripentonal hexons, and the rest of VI is disordered. While the triskelion substructures formed by the N-termini of IX conform to excellent quasi 3-fold symmetry, the tetrameric coiled-coils formed by the C-termini and organized in parallel and anti-parallel arrangement do not exhibit any quasi-symmetry. This observation also conveys the pitfalls of using the quasi-equivalence as validation criteria for the structural analysis of extended (non-modular) capsid proteins such as IX. Together, these results remedy certain discrepancies in the previous X-ray model in agreement with the cryo-electron microscopy models.  相似文献   

3.
Sensitive techniques for acrylamide gel electrophoretic analysis have been applied to animal virus systems and have proven generally useful. Estimates of the number of kinds, molecular weights and number of molecules of proteins in almost any biological sample have been made with ease. As applied to the poliovirus-HeLa cell system they reveal four major proteins in the virion and at least ten additional proteins in the infected cell. Some of the intracellular and particulate proteins undergo cleavage reactions following a unique translation in which the genome is apparently translated in toto as one large polypeptide of molecular weight greater than 200,000 daltons. The splits occur at three levels: (a) during synthesis; (b) at intermediate stages; and (c) co-incident with maturation. In vitro studies on protein synthesis, RNA synthesis and virus assembly have substantiated and extended the in vivo observations. The structure of the adenovirion has been established in detail. Hexon, penton base, fiber and core polypeptides and certain relevant subviral structures have been identified. Nearly all of the proteins synthesized in the infected cells after 20 hours are viral. The major structural antigens (hexon and penton) predominate and are made in 10 to 50 fold excess but the internal core polypeptides are not produced in great excess. Studies on the synthesis of polypeptides and their assembly into morphological subunits and virions show that hexon and penton polypeptides are made in about four and two minutes respectively on cytoplasmic polyribosomes, that morphological subunits are formed within five minutes of synthesis of protein, and that there is a delay of greater than one half hour for entry of hexons into virions.  相似文献   

4.
Particles of adenovirus type 2 (ad2), when disassembled, consistently yield groups-of-nine (GON) hexons, which are the major virion shell component. The location of a minor component (6%) of the GON has been determined using a novel combination of electron microscopy and X-ray crystallography. The Brookhaven Scanning Transmission Electron Microscope (STEM) was used to estimate the distribution of protein in the GON to a resolution of 15-18 A. The relative hexon positions then were determined to within 1 A using a model of the hexon derived from the X-ray crystal structure to search the STEM image. The difference image between the STEM image and a model hexon group reveals individual monomers of polypeptide IX extending along the hexon--hexon interfaces. The distribution confirms our earlier proposal that four trimers of polypeptide IX are embedded in the large cavities in the upper surface of the GON to cement hexons into a highly-stable assembly.  相似文献   

5.
While X-ray crystallography provides atomic resolution structures of proteins and small viruses, electron microscopy provides complementary structural information on the organization of larger assemblies at lower resolution. A novel combination of these two techniques has bridged this resolution gap and revealed the various structural components forming the capsid of human type 2 adenovirus. An image reconstruction of the intact virus, derived from cryo-electron micrographs, was deconvolved with an approximate contrast transfer function to mitigate microscope distortions. A model capsid was calculated from 240 copies of the crystallographic structure of the major capsid protein and filtered to the correct resolution. Subtraction of the calculated capsid from the corrected reconstruction gave a three-dimensional difference map revealing the minor proteins that stabilize the virion. Elongated density penetrating the hexon capsid at the facet edges was ascribed to polypeptide IIIa, a component required for virion assembly. Density on the inner surface of the capsid, connecting the ring of peripentonal hexons, was assigned as polypeptide VI, a component that binds DNA. Identification of the regions of hexon that contact the penton base suggests a structural mechanism for previously proposed events during cell entry.  相似文献   

6.
Mature human adenovirus particles contain four minor capsid proteins, in addition to the three major capsid proteins (penton base, hexon and fiber) and several proteins associated with the genomic core of the virion. Of the minor capsid proteins, VI plays several crucial roles in the infection cycle of the virus, including hexon nuclear targeting during assembly, activation of the adenovirus proteinase (AVP) during maturation and endosome escape following cell entry. VI is translated as a precursor (pVI) that is cleaved at both N- and C-termini by AVP. Whereas the role of the C-terminal fragment of pVI, pVIc, is well established as an important co-factor of AVP, the role of the N-terminal fragment, pVIn, is currently elusive. In fact, the fate of pVIn following proteolytic cleavage is completely unknown. Here, we use a combination of proteomics-based peptide identification, native mass spectrometry and hydrogen–deuterium exchange mass spectrometry to show that pVIn is associated with mature human adenovirus, where it binds at the base of peripentonal hexons in a pH-dependent manner. Our findings suggest a possible role for pVIn in targeting pVI to hexons for proper assembly of the virion and timely release of the membrane lytic mature VI molecule.  相似文献   

7.
Image reconstruction reveals the complex molecular organization of adenovirus   总被引:22,自引:0,他引:22  
The three-dimensional structure of adenovirus has been determined by image reconstruction from cryo-electron micrographs. Comparison with the high resolution X-ray crystal structure of hexon, the major capsid protein, enabled an unusually detailed interpretation of the density map and confirmed the validity of the reconstruction. The hexon packing in the capsid shows more extensive intermolecular interfaces between facets than previously proposed. The reconstruction provides the first three-dimensional visualization of the vertex proteins, including the penton base and its associated protruding fiber. Three minor capsid proteins that stabilize and modulate capsomer interactions are revealed. One of these components stabilizes the group-of-nine hexons in the center of each facet and the other two bridge hexons in adjacent facets. The strategic positions of these proteins highlight the importance of cementing proteins in stabilizing a complex assembly.  相似文献   

8.
Adenovirus type 2 mRNA was translated in S30 extracts from Ehrlich ascites and wheat embryo cells. The in vitro products were identified by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation with specific antisera in the presence of urea. Seven virion polypeptides could be identified by immunoprecipitation. Three of these appear to be precursors to polypeptides of the virion. mRNA isolated late in adenovirus infection was separated into three size classes by zonal sedimentation. Material sedimenting at 26S was translated into polypeptides corresponding to the largest virion polypeptides II to IV, a 22S fraction corresponding to polypeptide V, and smaller polypeptides and a 15S fraction corresponding to polypeptide IX. A significant amount of polypeptide IX was also synthesized by the 26S and 22S RNA.  相似文献   

9.
Each of the more than 1500 polypeptide molecules of 7 different types building up the adenovirus capsid--probably even those of their amino-acids--are in symmetrical location. Every kind of polypeptide forms a separately also symmetrical network in the capsid distributed according to their functions in the inner and outer side and the inside of the facets and edges, but always in compliance with the icosahedral symmetry. Therefore, each different polypeptide also means a general symmetry motif in the capsid in its own symmetry network. Hexons can be considered as general symmetry motifs in some special association that is because of their environmental position four kinds of hexon types can be found, which are on every facet, next to one another, like three identical groups of four (GOF) according to the three-fold rotational symmetry. Two polypeptides of a peripentonal hexon of each GOF orient toward the penton and the third toward the other penton located further on the same edge. There are two versions of the arrangement of the GOFs: the hexons surround either a polypeptide IX or a polypeptide IlIa. The two versions of GOFs on 20 facets symmetrically recurring 60 times as general hexon symmetry motifs form the capsid in combination with the network of other polypeptides. Ideally, the surface of the hexon trimer shows three-fold rotational and three-fold reflexional symmetries. In the arrangement of hexons in the facets the translational, rotational, horizontal and vertical reflexional symmetry and the combination of these, as well as the glide reflexion and the antisymmetry can be found. Each hexon has six nearest neighbours and every hexon takes part in the construction of three hexon rows. Every facet and every vertex made up of five facets has an antisymmetrical pair located on the opposite side of the capsid. Every triangular facet participates in forming three vertices and every facet has three nearest neighbouring facets. In the facets, the polypeptide subunits of polypeptide IX centered GOF hexons have identical counter-clockwise orientation but the orientation of the neighbouring facets is always opposite compared to each other. On the five-fold symmetry axis, any facet can be "turned on" to the adjacent facet or "rotated" to all the others and will take the symmetry and orientation of the facet it got turned on or rotated to. Thus, every facet together with the polypeptides attached to it shows a twenty-fold symmetry and multiplicity. An other type of symmetry and multiplicity in the capsid is that perpendicular to the 6 five-fold rotation axes run a geodetic (equatorial) ribbon like motif (superfieces) altogether six made up of 10 x 10 triangular facets and bent ten-times with an angle of 36 degrees. A triangular facet participates in forming three ribbon-like motifs, which intersect with each other on the given facet, but the same three motifs intersect repeatedly only on the antisymmetrically located facet.  相似文献   

10.
The adenovirus penton, a noncovalent complex of the pentameric penton base and trimeric fiber proteins, comprises the vertices of the adenovirus capsid and contains all necessary components for viral attachment and internalization. The 3.3 A resolution crystal structure of human adenovirus 2 (hAd2) penton base shows that the monomer has a basal jellyroll domain and a distal irregular domain formed by two long insertions, a similar topology to the adenovirus hexon. The Arg-Gly-Asp (RGD) motif, required for interactions with cellular integrins, occurs on a flexible surface loop. The complex of penton base with bound N-terminal fiber peptide, determined at 3.5 A resolution, shows that the universal fiber motif FNPVYPY binds at the interface of adjacent penton base monomers and results in a localized structural rearrangement in the insertion domain of the penton base. These results give insight into the structure and assembly of the adenovirus capsid and will be of use for gene-therapy applications.  相似文献   

11.
The vertex of the adenoviral capsid is formed by the penton, a complex of two proteins, the pentameric penton base and the trimeric fiber protein. The penton contains all necessary components for viral attachment and entry into the host cell. After initial attachment via the head domain of the fiber protein, the penton base interacts with cellular integrins through an Arg-Gly-Asp (RGD) motif located in a hypervariable surface loop, triggering virus internalization. In order to investigate the structural and functional role of this region, we replaced the hypervariable loop of serotype 2 with the corresponding, but much shorter, loop of serotype 12 and compared it to the wild type. Here, we report the 3.6 A crystal structure of a human adenovirus 2/12 penton base chimera crystallized as a dodecamer. The structure is generally similar to human adenovirus 2 penton base, with the main differences localized to the fiber protein-binding site. Fluorescence anisotropy assays using a trimeric fiber protein mimetic called the minifiber and wild-type human adenovirus 2 and chimeric penton base demonstrate that fiber protein binding is independent of the hypervariable loop, with a K(d) for fiber binding estimated in the 1-2 microm range. Interestingly, competition assays using labeled and unlabeled minifiber demonstrated virtually irreversible binding to the penton base, which we ascribe to a conformational change, on the basis of comparisons of all available penton base structures.  相似文献   

12.
During the period between 20 and 24 hr after infection of KB cells with type 5 adenovirus, at a time when approximately 85% of the proteins made were virus-specific, viral proteins were synthesized on polyribosomes with an average sedimentation coefficient of 200S. The polypeptide chains synthesized during a 1-min period of labeling with (14)C-amino acids had an average sedimentation coefficient of 3.4S in sucrose gradients containing 1% sodium dodecyl sulfate. Within 1 min after completion, the newly made polypeptide chains were released from polyribosomes, and the majority were transported into the nuclei within 6 min. Meanwhile, the immunological reactivity of the newly synthesized proteins also increased rapidly. During the same 6-min interval after synthesis, the single polypeptide chains assembled into multimeric proteins with average sedimentation coefficients of 6S, 9S, and 12S. The 6S and 12S proteins were identified immunologically as the fiber and hexon capsid proteins, respectively. The 9S protein was trypsin-sensitive and appeared to be the precursor of the penton; it was tentatively identified as the penton base. The penton had a sedimentation coefficient of about 10.5S and sedimented with the hexon in sucrose gradients. The concomitant migration of nascent proteins into the nuclei, development of the capsid proteins' immunological reactivity, and morphogenesis of the multimeric capsid proteins suggest that the single polypeptide chains or small complexes were transported into the nuclei where they assembled into mature structural proteins of the virion.  相似文献   

13.
Maturation of adenoviruses is distinguished by proteolytic processing of several interior minor capsid proteins and core proteins by the adenoviral protease and subsequent reorganization of adenovirus core. We report the results derived from the icosahedrally averaged cryo-EM structure of a cell entry defective form of adenovirus, designated ts1, at a resolution of 3.7 Å as well as of the localized reconstructions of unique hexons and penton base. The virion structure revealed the structures and organization of precursors of minor capsid proteins, pIIIa, pVI and pVIII, which are closely associated with the hexons on the capsid interior. In addition to a well-ordered helical domain (a.a. 310–397) of pIIIa, highlights of the structure include the precursors of VIII display significantly different structures near the cleavage sites. Moreover, we traced residues 4–96 of the membrane lytic protein (pVI) that includes an amphipathic helix occluded deep in the hexon cavity suggesting the possibility of co-assembly of hexons with the precursors of VI. In addition, we observe a second copy of pVI ordered up to residue L40 in the peripentonal hexons and a few fragments of density corresponding to 2nd and 3rd copies of pVI in other hexons. However, we see no evidence of precursors of VII binding in the hexon cavity. These findings suggest the possibility that differently bound pVI molecules undergo processing at the N-terminal cleavage sites at varying efficiencies, subsequently creating competition between the cleaved and uncleaved forms of VI, followed by reorganization, processing, and release of VI molecules from the hexon cavities.  相似文献   

14.
The structure of adenovirus was determined to a resolution of 6 A by cryoelectron microscopy (cryoEM) single-particle image reconstruction. Docking of the hexon and penton base crystal structures into the cryoEM density established that alpha-helices of 10 or more residues are resolved as rods. A difference map was calculated by subtracting a pseudoatomic capsid from the cryoEM reconstruction. The resulting density was analyzed in terms of observed alpha-helices and secondary structure predictions for the additional capsid proteins that currently lack atomic resolution structures (proteins IIIa, VI, VIII, and IX). Protein IIIa, which is predicted to be highly alpha-helical, is assigned to a cluster of helices observed below the penton base on the inner capsid surface. Protein VI is present in approximately 1.5 copies per hexon trimer and is predicted to have two long alpha-helices, one of which appears to lie inside the hexon cavity. Protein VIII is cleaved by the adenovirus protease into two fragments of 7.6 and 12.1 kDa, and the larger fragment is predicted to have one long alpha-helix, in agreement with the observed density for protein VIII on the inner capsid surface. Protein IX is predicted to have one long alpha-helix, which also has a strongly indicated propensity for coiled-coil formation. A region of density near the facet edge is now resolved as a four-helix bundle and is assigned to four copies of the C-terminal alpha-helix from protein IX.  相似文献   

15.
Adenovirus invades host cells by first binding to host receptors through a trimeric fiber, which contains three domains: a receptor-binding knob domain, a long flexible shaft domain, and a penton base-attachment tail domain. Although the structure of the knob domain associated with a portion of the shaft has been solved by X-ray crystallography, the in situ structure of the fiber in the virion is not known; thus, it remains a mystery how the trimeric fiber attaches to its underlying pentameric penton base. By high-resolution cryo-electron microscopy, we have determined the structure of the human adenovirus type 5 (Ad5) to 3.6-Å resolution and have reported the full atomic models for its capsid proteins, but not for the fiber whose density cannot be directly interpreted due to symmetry mismatch with the penton base. Here, we report the determination of the Ad5 fiber structure and its mode of attachment to the pentameric penton base by using an integrative approach of multi-resolution filtering, homology modeling, computational simulation of mismatched symmetries, and fitting of atomic models into cryo-electron microscopy density maps. Our structure reveals that the interactions between the trimeric fiber and the pentameric penton base are mediated by a hydrophobic ring on the top surface of the penton base and three flexible tails inserted into three of the five available grooves formed by neighboring subunits of penton base. These interaction sites provide the molecular basis for the symmetry mismatch and can be targeted for optimizing adenovirus for gene therapy applications.  相似文献   

16.
The nature, polypeptide composition, and antigenic composition of the particles formed by six human adenovirus type 2 temperature-sensitive (ts) mutants were studied. ts115, ts116, and ts125 were phenotypically fiber-defective mutants, and ts103, ts104, and ts136 failed to synthesize detectable amounts of fiber plus penton base at 39.5 degrees C. The mutants belonged to five complementation groups, one group including ts116 and ts125. Except for ts103 and ts136, the other mutants were capable of producing particles at 39.5 degrees C. ts116 and ts125 accumulated light assembly intermediate particles (or top components) at nonpermissive temperatures, with few virus particles. The sodium dodecyl sulfate polypeptide pattern of ts116- or ts125-infected cells, intermediate particles, and virus particles showed that polypeptide IV (fiber) was smaller by a molecular weight of 2,000 than that in the wild-type virion and was glycosylated. In fiber plus penton base-defective ts104-infected cells, equivalent quantities of top components and viruses with a buoyant density (rho) of 1.345 g/ml (rho = 1.345 particles) were produced at 39.5 degrees C. These rho = 1.345 particles corresponded to young virions, as evidenced by the presence of uncleaved precursors to proteins VI, VIII, and VII. These young virions matured upon a shift down. Virus capsid vertex antigenic components underwent a phase of eclipse during their incorporation into mature virus particles. No antigenic penton base or IIa was detected in intermediate particles of all the ts mutants tested. Only hexon and traces of fiber antigens were found in ts104 young virions. Penton base and IIIa appeared as fully antigenically expressed capsid subunits in mature wild-type virions or ts104 virions after a shift down. The ts104 lesion is postulated to affect a regulatory function related in some way to penton base and fiber overproduction and the maturation processing of precursors PVI, PVII, and PVII.  相似文献   

17.
M Bai  L Campisi    P Freimuth 《Journal of virology》1994,68(9):5925-5932
The penton base gene from adenovirus type 12 (Ad12) was sequenced and encodes a 497-residue polypeptide, 74 residues shorter than the penton base from Ad2. The Ad2 and Ad12 proteins are highly conserved at the amino- and carboxy-terminal ends but diverge radically in the central region, where 63 residues are missing from the Ad12 sequence. Conserved within this variable region is the sequence Arg-Gly-Asp (RGD), which, in the Ad2 penton base, binds to integrins in the target cell membrane, enhancing the rate or the efficiency of infection. The Ad12 penton base was expressed in Escherichia coli, and the purified refolded protein assembled in vitro with Ad2 fibers. In contrast to the Ad2 penton base, the Ad12 protein failed to cause the rounding of adherent cells or to promote attachment of HeLa S3 suspension cells; however, A549 cells did attach to surfaces coated with either protein and pretreatment of the cells with an integrin alpha v beta 5 monoclonal antibody reduced attachment to background levels. Treatment of HeLa and A549 cells with integrin alpha v beta 3 or alpha v beta 5 monoclonal antibodies or with an RGD-containing fragment of the Ad2 penton base protein inhibited infection by Ad12 but had no effect on and in some cases enhanced infection by Ad2. Purified Ad2 fiber protein reduced the binding of radiolabeled Ad2 and Ad12 virions to HeLa and A549 cells nearly to background levels, but the concentrations of fiber that strongly inhibited infection by Ad2 only weakly inhibited Ad12 infection. These data suggest that alpha v-containing integrins alone may be sufficient to support infection by Ad12 and that this pathway is not efficiently used by Ad2.  相似文献   

18.
By starch-gel electrophoresis and a staining method that is highly sensitive for argininyl residues, adenovirus type 5 was found to contain two minor basic polypeptides of extreme cathodic mobility in addition to the two known core proteins. The fastest-migrating polypeptide, named mu protein, and the second fastest polypeptide are found in adenovirions and virus-infected KB cells but not in top components or in uninfected cells. The top components and infected cells contain an additional basic polypeptide, presumably P-VII, that migrates slightly slower than polypeptide VII. None of the basic polypeptides of adenovirions was electrophoretically identical to the host histone. The basic proteins of adenovirions were purified by urea phosphocellulose column chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The two minor basic core proteins, mu and another component, have similar mobilities in sodium dodecyl sulfate-polyacrylamide gels as a complex of polypeptides X-XII. After further purification on a Sephadex G-75 column, the mu protein was found to have a molecular weight of about 4,000. Amino acid analysis showed that the mu protein lacks tryptophan and 69% of the total amino acid residues are basic, that is, 54% arginine, 13% histidine, and 2% lysine. Only eight amino acids seem to contribute to make the mu polypeptide. There are 125 copies of the mu polypeptide per 1,000 copies of polypeptide VII in a virion.  相似文献   

19.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

20.
The orientation and relative positions of all 240 hexons in the icosahedral outer capsid of adenovirus have been determined. Two types of capsid fragments, obtained after selective disruption of the virion, were analyzed using electron microscopy and image-processing techniques. Planar inverted groups-of-nine, arising from the central region of the capsid facet, were minimally stained to reveal the morphology of restricted regions of their component hexons. Images shown to be related by correspondence analysis were averaged and features of the individual hexon molecule, known from an X-ray crystallographic investigation, were used in their interpretation. The study confirms earlier observations that the hexons in the group-of-nine are distributed on a p3 net, shows that the hexons form a close-packed array using the pseudo-hexagonal shape of the hexon base, and provides their relative positions. Twenty interlocking groups-of-nine account for 180 of the 240 hexons present in the viral capsid. The orientation of the remaining 60 peripentonal hexons was obtained from a rotationally averaged image of a quarter-capsid, a novel viral fragment comprising five complete facets. Each peripentonal hexon forms planar asymmetric interactions with two neighbors in an adjacent group-of-nine so that it lies on an extension of the p3 net. The complete facet thus consists of 12 hexons arranged on a planar p3 net, with a shape that permits interlocking of hexons at the capsid edge. The relative positions of the hexons have been determined to within 5 A using the molecular model, and indicate that the pseudo-hexagonal basal regions are close-packed in a manner that maximizes the hexon-hexon contacts. The results confirm the model proposed earlier for the arrangement of hexons within the adenovirus capsid (Burnett, 1985), and show the power of the inter-disciplinary approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号