首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high resolution structure of alpha-conotoxin EI has been determined by (1)H NMR spectroscopy and molecular modeling. alpha-Conotoxin EI has the same disulfide framework as alpha 4/7 conotoxins targeting neuronal nicotinic acetylcholine receptors but antagonizes the neuromuscular receptor as do the alpha 3/5 and alpha A conotoxins. The unique binding preference of alpha-conotoxin EI to the alpha(1)/delta subunit interface of Torpedo neuromuscular receptor makes it a valuable structural template for superposition of various alpha-conotoxins possessing distinct receptor subtype specificities. Structural comparison of alpha-conotoxin EI with the gamma-subunit favoring alpha-conotoxin GI suggests that the Torpedo delta-subunit preference of the former originates from its second loop. Superposition of three-dimensional structures of seven alpha-conotoxins reveals that the estimated size of the toxin-binding pocket in nicotinic acetylcholine receptor is approximately 20 A (height) x 20 A (width) x 15 A (thickness).  相似文献   

2.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

3.
alpha-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing alpha6 and alpha3 subunits. alpha-conotoxin PIA displays 75-fold higher affinity for rat alpha6/alpha3beta2beta3 nAChRs than for rat alpha3beta2 nAChRs. We have determined the three-dimensional structure of alpha-conotoxin PIA by nuclear magnetic resonance spectroscopy. The alpha-conotoxin PIA has an "omega-shaped" overall topology as other alpha4/7 subfamily conotoxins. Yet, unlike other neuronally targeted alpha4/7-conotoxins, its N-terminal tail Arg1-Asp2-Pro3 protrudes out of its main molecular body because Asp2-Pro3-Cys4-Cys5 forms a stable type I beta-turn. In addition, a kink introduced by Pro15 in the second loop of this toxin provides a distinct steric and electrostatic environment from those in alpha-conotoxins MII and GIC. By comparing the structure of alpha-conotoxin PIA with other functionally related alpha-conotoxins we suggest structural features in alpha-conotoxin PIA that may be associated with its unique receptor recognition profile.  相似文献   

4.
We have determined a high-resolution three-dimensional structure of alpha-conotoxin BuIA, a 13-residue peptide toxin isolated from Conus bullatus. Despite its unusual 4/4 disulfide bond layout alpha-conotoxin BuIA exhibits strong antagonistic activity at alpha6/alpha3beta2beta3, alpha3beta2, and alpha3beta4 nAChR subtypes like some alpha4/7 conotoxins. alpha-Conotoxin BuIA lacks the C-terminal beta-turn present within the second disulfide loop of alpha4/7 conotoxins, having only a "pseudo omega-shaped" molecular topology. Nevertheless, it contains a functionally critical two-turn helix motif, a feature ubiquitously found in alpha4/7 conotoxins. Such an aspect seems mainly responsible for similarities in the receptor recognition profile of alpha-conotoxin BuIA to alpha4/7 conotoxins. Structural comparison of alpha-conotoxin BuIA with alpha4/7 conotoxins and alpha4/3 conotoxin ImI suggests that presence of the second helical turn portion of the two-turn helix motif in alpha4/7 and alpha4/4 conotoxins may be important for binding to the alpha3 and/or alpha6 subunit of nAChR.  相似文献   

5.
We have used site-directed mutagenesis to examine the role played by Arg191, Arg193, and Arg194 of the fusion toxin DAB486-IL-2 in the intoxication of high affinity interleukin-2 receptor-bearing T-lymphocytes. These arginine residues are positioned in the proteolytically sensitive 14-amino acid loop subtended by the disulfide bond between Cys187 and Cys202 in this fusion toxin. DAB486-IL-2 was formed by the genetic substitution of the native diphtheria toxin receptor binding domain with human interleukin-2 (Williams, D.P., Parker, K., Bacha, P., Bishai, W., Borowski, M., Genbauffe, F., Strom, T.B., and Murphy, J.R. (1987) Protein Eng. 1, 493-498). We demonstrate that substitution of Arg194 with Gly results in a 1000-fold loss of DAB486-IL-2 potency. Since trypsin "nicking" of the Gly194 mutant restores biologic activity, we conclude that Arg194 is required for the cellular processing of the fusion toxin which results in the release of fragment A into the cytosol.  相似文献   

6.
A series of 1-ns MD simulations were performed on the scorpion toxin Lqh III in native and disulfide bond broken states. The removal of disulfide bonds has caused hydrogen bond network alteration in the five-residue turn, the long loop, the alpha-helix, the loop connecting strands II and III, and the C-terminal region. In addition and more importantly, it has influenced the amplitude of the fluctuations of five-residue turn, loops, and C-terminal region with a minor effect on the fluctuations of the cysteines in the broken bond sites. These findings suggest that disulfide bonds are not the most important factors in rigidifying their own locations, while they have more important effects at a global scale. Furthermore, our results reveal that disulfide bonds have considerable influence on the functionally important essential modes of motions and the correlations between the motions of the binding site residues. Therefore, we can conclude that disulfide bonds have a crucial role in modulating the function via adjusting the dynamics of scorpion toxin molecules. Although this conclusion cannot be generalized to all peptides and proteins, it demonstrates the importance of more investigations on this aspect of disulfide bond efficacy.  相似文献   

7.
Rearrangement of disulfide bonds during the synthesis of alpha-conotoxin GI using PhS(O)Ph/CH(3)SiCl(3) oxidation procedure was observed. We have demonstrated that the protecting scheme (order of acetamidomethyl (Acm) and (t)Bu protecting groups) of the Cys residues as well as the reaction time influenced the ratio of the native and the mispaired compounds, while the temperature of the reaction mixture had no significant effect. However, in all cases the nonnative derivative was produced in high amount. The structure of the isomers was identified by the combination of enzymatic digestion and mass spectrometry measurements. We conclude that the air oxidation followed by the application of Tl(tfa)(3) for the regioselective formation of disulfide bonds leads up to the appropriate compound in the case of the synthesis of alpha-conotoxin GI, while the oxidation procedure using PhS(O)Ph/CH(3)SiCl(3) system resulted in the nonnative disulfide isomer.  相似文献   

8.
T Endo  M Oya  N Tamiya  K Hayashi 《Biochemistry》1987,26(14):4592-4598
The role of the "C-terminal tail" segment of long neurotoxins has been investigated. The C-terminal four to five residues of alpha-bungarotoxin and Laticauda colubrina b have been cleaved off by carboxypeptidase P. The effect of such deletion on the toxin conformation has been monitored in proton nuclear magnetic resonance spectra and circular dichroism spectra. The removal of the C-terminal residues primarily affects the chemical shifts of proton resonances of the residues close to the cleavage site and does not induce a major conformational change. Therefore, the C-terminal tail of long neurotoxins does not appear to be important in maintaining the specific polypeptide chain folding. On the other hand, competition binding with tritium-labeled toxin alpha to Narke japonica acetylcholine receptor has revealed that cleavage of the C-terminal residues reduces the binding activity of alpha-bungarotoxin or Laticauda colubrina b to acetylcholine receptor. Thus it is likely that (the basic amino acid residues in) the C-terminal tail is directly involved in the binding of long neurotoxins to electric organ (and muscle) acetylcholine receptor.  相似文献   

9.
alpha-Cobratoxin, a long chain curaremimetic toxin from Naja kaouthia venom, was produced recombinantly (ralpha-Cbtx) from Escherichia coli. It was indistinguishable from the snake toxin. Mutations at 8 of the 29 explored toxin positions resulted in affinity decreases for Torpedo receptor with DeltaDeltaG higher than 1.1 kcal/mol. These are R33E > K49E > D27R > K23E > F29A >/= W25A > R36A >/= F65A. These positions cover a homogeneous surface of approximately 880 A(2) and mostly belong to the second toxin loop, except Lys-49 and Phe-65 which are, respectively, on the third loop and C-terminal tail. The mutations K23E and K49E, and perhaps R33E, induced discriminative interactions at the two toxin-binding sites. When compared with the short toxin erabutoxin a (Ea), a number of structurally equivalent residues are commonly implicated in binding to muscular-type nicotinic acetylcholine receptor. These are Lys-23/Lys-27, Asp-27/Asp-31, Arg-33/Arg-33, Lys-49/Lys-47, and to a lesser and variable extent Trp-25/Trp-29 and Phe-29/Phe-32. In addition, however, the short and long toxins display three major differences. First, Asp-38 is important in Ea in contrast to the homologous Glu-38 in alpha-Cbtx. Second, all of the first loop is insensitive to mutation in alpha-Cbtx, whereas its tip is functionally critical in Ea. Third, the C-terminal tail may be specifically critical in alpha-Cbtx. Therefore, the functional sites of long and short curaremimetic toxins are not identical, but they share common features and marked differences that might reflect an evolutionary pressure associated with a great diversity of prey receptors.  相似文献   

10.
Azidobenzoyl (AzBz) and benzoylbenzoyl (BzBz) derivatives of alpha-conotoxin MI and L-benzoylphenylalanine (Bpa) analogs of alpha-conotoxin GI were synthesized. All these compounds, similarly to native alpha-conotoxins, completely displaced the radioiodinated MI or GI from the membrane-bound nicotinic acetylcholine receptor (AChR) of Torpedo californica. However, the GI(Bpa11) analog was considerably less potent than GI in competing with radioiodinated alpha-bungarotoxin (alphaBgt). Irradiation of iodinated AzBz derivatives bound to AChR resulted in labeling of all AChR subunits. The BzBz and Bpa derivatives gave lower levels of specific cross-linking but considerable labeling at additional sites that was enhanced, rather than suppressed, by an excess of native alpha-conotoxins or alphaBgt. Both equilibrium binding of benzophenone-derivatized alpha-conotoxins and their cross-linking could be totally abolished by physostigmine. The results obtained demonstrate that (a) specific binding sites for alpha-conotoxins and alphaBgt are overlapping but not identical, (b) each of the AChR subunits can be labeled with photoactivatable alpha-conotoxins and (c) enhancement of benzophenone-derivatized alpha-conotoxins cross-linking at additional (physostigmine-related) sites by alphaBgt or GI indicates that these antagonists induce structural alterations in the AChR outside their binding sites.  相似文献   

11.
The complete amino acid sequence of the papain-solubilized heavy chain of a human histocompatibility antigen (HLA-B7) has been elucidated. It consists of a polypeptide of 271 residues (31 333 daltons). A single glycan moiety is attached to an asparagine residue at position 86 by an N-glycosidic bond. Two intrachain disulfide bonds, arranged linearly, involve half-cystine residues at positions 101 and 164 and at positions 203 and 259. They form two loops of 62 and 55 residues, respectively, separated by 38 residues. Computer analysis of the sequence suggests the existence of internal homology between the amino-terminal portion (residues 1--90) and the region of the first disulfide loop (residues 91--180). There is a significant homology between the second disulfide loop region of the chain (residues 182-271) and immunoglobulin (Ig) constant domains and beta 2-microglobulin [Orr, H. T., Lancet, D., Robb, R. J., López de Castro, J. A., & Strominger, J. L. (1979A) Nature (London) (in press)]. However, no such homology to Ig is apparent in the amino-terminal or in the first disulfide loop regions.  相似文献   

12.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. Alpha subunits, together with beta 2 and/or beta 4 subunits, form ligand-binding sites at alpha/beta subunit interfaces. Predatory marine snails of the genus Conus are a rich source of nAChR-targeted peptides. Using conserved features of the alpha-conotoxin signal sequence and 3'-untranslated sequence region, we have cloned a novel gene from the fish-eating snail, Conus bullatus; the gene codes for a previously unreported alpha-conotoxin with unusual 4/4 spacing of amino acids in the two disulfide loops. Chemical synthesis of the predicted mature toxin was performed. The resulting peptide, alpha-conotoxin BuIA, was tested on cloned nAChRs expressed in Xenopus oocytes. The peptide potently blocks numerous rat nAChR subtypes, with highest potency for alpha 3- and chimeric alpha 6-containing nAChRs; BuIA blocks alpha 6/alpha 3 beta 2 nAChRs with a 40,000-fold lower IC(50) than alpha 4 beta 2 nAChRs. The kinetics of toxin unblock are dependent on the beta subunit. nAChRs with a beta 4 subunit have very slow off-times, compared with the corresponding beta 2 subunit-containing nAChR. In each instance, rat alpha x beta 4 may be distinguished from rat alpha x beta 2 by the large difference in time to recover from toxin block. Similar results are obtained when comparing mouse alpha 3 beta 2 to mouse alpha 3 beta 4, and human alpha 3 beta2 to human alpha 3 beta 4, indicating that the beta subunit dependence extends across species. Thus, alpha-conotoxin BuIA also represents a novel probe for distinguishing between beta 2- and beta 4-containing nAChRs.  相似文献   

13.
Thrombin inhibition by cyclic peptides from thrombomodulin.   总被引:4,自引:3,他引:1       下载免费PDF全文
Peptides corresponding to the loop regions of the fourth, fifth, and sixth epidermal growth factor (EGF)-like domains of thrombomodulin (TM) have been synthesized and assayed for thrombin inhibition, as indicated by both inhibition of thrombin-mediated fibrinogen clotting and inhibition of the association of thrombin with TM that results in protein C activation. Peptides from the fifth EGF-like domain showed significant inhibition of fibrinogen clotting and protein C activation, whereas peptides from the fourth and sixth EGF-like domains were weak inhibitors in both assays. Two structural features were important for inhibitory potency of the peptides from the fifth EGF-like domain: cyclization by a disulfide bond and attachment of the "tail" amino acids C-terminal to the disulfide loop. Linear control peptides did not significantly inhibit clotting or protein C activation. The C-terminal loop alone, the "tail" peptide, or a mixture of the two were at least 10-fold less potent inhibitors of clotting or protein C activation. A more constrained peptide analog was designed by deletion of an isoleucine within the C5-C6 disulfide loop, TM52-1 + 5C. This analog was a better inhibitor in both assay systems, having a Ki for protein C activation of 26 microM.  相似文献   

14.
Two photoactivatable analogues of alpha-conotoxin GI with the benzoylphenylalanine residue (Bpa) substituted for His10 or Tyr11 were synthesized using the method of solid-phase peptide synthesis. In addition, alpha-conotoxin MI was chemically modified by placing an azidobenzoyl or a benzoylbenzoyl photo label at N alpha of Gly1 or N epsilon of Lys10. All the photoactivatable analogues were purified by HPLC, their structures were confirmed by MALDI MS, and the label positions in their molecules were localized by MS of their trypsinolysis fragments. All the analogues interacted with the nicotinic acetylcholine receptor (AChR) from Torpedo californica as efficiently as the native alpha-conotoxins, with the differences in the inhibition constants being within one order of magnitude under the same conditions. [125I]Derivatives prepared from all the analogues retained the ability to be bound by AChR and were used in the photoinduced AChR cross-linking. All the AChR subunits were found to be cross-linked to the photoactivatable analogues, with the linking depending on both the chemical nature of label and its position in the alpha-conotoxin molecule.  相似文献   

15.
Buczek O  Olivera BM  Bulaj G 《Biochemistry》2004,43(4):1093-1101
Conotoxins comprise a large and diverse group of peptide neurotoxins derived from Conus snail venoms; most contain multiple disulfide bonds. The conotoxin precursors consist of three distinct domains: the N-terminal signal sequence, an intervening propeptide region, and the C-terminal mature conotoxin. Formation of the native disulfide bonds during the oxidative folding of conotoxins is a prerequisite for their proper biological function, but in numerous in vitro folding experiments with mature conotoxins, a lack of specificity in formation of the native Cys-Cys connectivities is observed. The mechanisms that ensure that the native disulfide bonds are formed in venom ducts during biosynthesis remain unknown. To evaluate whether the propeptide could potentially function as an intramolecular chaperone, we studied the oxidative folding of a conotoxin precursor, pro-GI, belonging to the alpha-conotoxin family. Our results indicate that the propeptide sequence did not directly contribute to folding kinetics and thermodynamics. However, we found that the propeptide region of pro-GI played an important role when oxidative folding was catalyzed by protein disulfide isomerase (PDI). The PDI-assisted reaction was more efficient during the early folding in the context of the propeptide sequence (pro-GI), as compared to that of the mature conotoxin (alpha-GI). Taken together, our results suggest for the first time that the propeptide region may play a role in the PDI-catalyzed oxidative folding of conotoxin precursors.  相似文献   

16.
Though it possesses four disulfide bonds the three-fingered fold is amenable to chemical synthesis, using a Fmoc-based method. Thus, we synthesized a three-fingered curaremimetic toxin from snake with high yield and showed that the synthetic and native toxins have the same structural and biological properties. Both were characterized by the same 2D NMR spectra, identical high binding affinity (K(d) = 22 +/- 5 pM) for the muscular acetylcholine receptor (AChR) and identical low affinity (K(d) = 2.0 +/- 0.4 microM) for alpha7 neuronal AchR. Then, we engineered an additional loop cyclized by a fifth disulfide bond at the tip of the central finger. This loop is normally present in longer snake toxins that bind with high affinity (K(d) = 1-5 nM) to alpha7 neuronal AchR. Not only did the chimera toxin still bind with the same high affinity to the muscular AchR but also it displayed a 20-fold higher affinity (K(d) = 100 nM) for the neuronal alpha7 AchR, as compared with the parental short-chain toxin. This result demonstrates that the engineered loop contributes, at least in part, to the high affinity of long-chain toxins for alpha7 neuronal receptors. That three-fingered proteins with four or five disulfide bonds are amenable to chemical synthesis opens new perspectives for engineering new activities on this fold.  相似文献   

17.
Limited cleavages of human C1r by extrinsic proteases of various specificity (plasmin, elastase, chymotrypsin, thermolysin) yield dimeric associations of two globular domains, each comprised of the intact B chain disulfide linked to gamma, the C-terminal fragment of the A chain. These (gamma-B)2 domains, which are homologous to those obtained from C1r by autolytic cleavage [Villiers, C. L., Arlaud, G. J., & Colomb, M. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 4477-4481], represent the core of the C1r molecule and are associated with the catalytic properties of the serine active site. V8 protease also yields (gamma-B)2 associations, although additional cleavages occur in the B chain. Sequence analysis shows that all cleavages generating the gamma fragments occur within a 13-residue sequence extending from positions 274 to 286 of the C1r A chain. Chemical cross-linking with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide of the (gamma-B)2 catalytic domains obtained from C1r autolytic cleavage indicates that each gamma-B domain interacts with its neighbor in a "head to tail" configuration, the gamma region of one domain interacting with the B chain of the other domain, and conversely. No evidence is found of gamma-gamma or B-B interactions. Such a head to tail configuration, placed in the context of the model proposed for the C1s-C1r-C1r-C1s catalytic subunit of C1 [Colomb, M. G., Arlaud, G. J., & Villiers, C. L. (1984) Philos. Trans. R. Soc. London, B 306, 283-292], is compatible with autolytic activation of C1r through an intramolecular cross-mechanism and with subsequent activation of C1s by activated C1r.  相似文献   

18.
alpha-Conotoxins are small peptides from cone snail venoms that function as nicotinic acetylcholine receptor (nAChR)-competitive antagonists differentiating between nAChR subtypes. Current understanding about the mechanism of these selective interactions is based largely on mutational analyses, which identify amino acids in the toxin and nAChR that determine the energetics of ligand binding. To identify regions of the nAChR involved in alpha-conotoxin binding by use of photoactivated cross-linking, two benzoylphenylalanine (Bpa) analogs of alpha-conotoxin GI, GI(Bpa12) and GI(Bpa4), were synthesized by replacing the respective residues with Bpa, and their (1)H-NMR structures were determined. Both analogs preserved the GI conformation, but only GI(Bpa12) displaced (125)I-labeled GI from the Torpedo californica nAChR. (125)I-labeled GI(Bpa12) bound to two sites on the receptor (K(d) 13 and 1800 nM), and on UV irradiation specifically photolabeled the alpha, gamma and delta subunits. Photolabeling sites were mapped by selective proteolysis and enzymatic deglycosylation, combined with SDS/PAGE, HPLC and Edman degradation. In the alpha subunit, cobratoxin-inhibited incorporation was limited to the 22-kDa fragment beginning at alphaSer173 and containing the agonist-binding site segment C. In the gamma subunit, radioactivity was localized to two distinct peptides containing agonist-binding site segments F and D: nonglycosylated 24-kDa and glycosylated 13-kDa fragments starting at gammaAla167 and gammaAla49, respectively. The labeling of these fragments is discussed in terms of a model of GI(Bpa12) bound to the extracellular domain of the Torpedo nAChR homology model derived from the cryo-electron microscopy structure of Torpedo marmorata nAChR and X-ray crystal structures of snail acetylcholine-binding protein complexes with agonists and antagonists.  相似文献   

19.
Class A G protein-coupled receptors (GPCRs) are able to form homodimers and/or oligomeric arrays. We recently proposed, based on bioluminescence resonance energy transfer studies with the M3 muscarinic receptor (M3R), a prototypic class A GPCR, that the M3R is able to form multiple, structurally distinct dimers that are probably transient in nature (McMillin, S. M., Heusel, M., Liu, T., Costanzi, S., and Wess, J. (2011) J. Biol. Chem. 286, 28584–28598). To provide more direct experimental support for this concept, we employed a disulfide cross-linking strategy to trap various M3R dimeric species present in a native lipid environment (transfected COS-7 cells). Disulfide cross-linking studies were carried out with many mutant M3Rs containing single cysteine (Cys) substitutions within two distinct cytoplasmic M3R regions, the C-terminal portion of the second intracellular loop (i2) and helix H8 (H8). The pattern of cross-links that we obtained, in combination with molecular modeling studies, was consistent with the existence of two structurally distinct M3R dimer interfaces, one involving i2/i2 contacts (TM4-TM5-i2 interface) and the other one characterized by H8-H8 interactions (TM1-TM2-H8 interface). Specific H8-H8 disulfide cross-links led to significant impairments in M3R-mediated G protein activation, suggesting that changes in the structural orientation or mobility of H8 are critical for efficient receptor-G protein coupling. Our findings provide novel structural and functional insights into the mechanisms involved in M3R dimerization (oligomerization). Because the M3R shows a high degree of sequence similarity with many other class A GPCRs, our findings should be of considerable general interest.  相似文献   

20.
The 13 amino acid toxic peptide from the marine snail Conus geographus, conotoxin GI, blocks the acetylcholine receptor at the neuromuscular junction. In this report, we describe a method for analyzing disulfide bonding in nanomole amounts of small cystine-rich peptides. The procedure involves partial reduction and a double-label alkylation of cysteine residues. Using this method, we show that the natural conotoxin GI has a (2-7, 3-13) disulfide configuration. The structure of conotoxin GI has been confirmed by chemical synthesis. The preparation and purification of molecularly homogeneous, iodinated derivatives of this toxin are also described. All derivatives, including the [diiodohistidine,diiodotyrosine]conotoxin GI, retained at least half of the biological activity of unmodified toxin. Since the tetraiodinated toxin, which is greater than 25% by weight iodine, retains considerable toxicity, unmodified histidine and tyrosine residues in conotoxin GI are not crucial for biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号