首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333-1345. 1966.-Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl(2), SrCl(2), or BaCl(2). Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed "coat fraction" from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH.  相似文献   

2.
Spores ofBacillus subtilis A were produced at different temperatures (23°–49°C) and examined for a number of sporal characteristics. Spore heat resistance increased with sporulation temperature to 45°C, with spores grown at 49°C showing a dramatic reduction in resistance. Spore crops showed biphasic thermal death curves whether enumerated on germination medium with or without calcium dipicolinate. This strain produces both rough and smooth variants. Of the spores produced at 23°C, 99% were rough, had a density of 1.305, and an average core/core + cortex volume ratio of 0.1838. At 49°C, 99% were smooth, had a density of 1.275, and an average volume ratio of 0.3098. Between these temperatures both spore types were produced. There appeared to be no direct correlation with sporulation temperature, heat resistance, and dipicolinate content. There was an increase in both the magnesium and calcium contents to 45°C with a dramatic reduction at 49°C. The 1.305 density spores had higher calcium and dipicolinate contents than the 1.275 spores, although both spore types showed biphasic thermal death curves. The mechanisms involved in determining which spore type (rough/smooth) is produced at a specific growth temperature is unknown.Florida Agricultural Experiment Station Journal Series Number R-00312.  相似文献   

3.
The causes of Bacillus spore resistance remain unclear. Many structures including a highly compact envelope, low hydration of the protoplast, high concentrations of Ca-chelated dipicolinic acid, and the presence of small acid-soluble spore proteins seem to contribute to resistance. To evaluate the role of internal protoplast composition and hydration, spores of Bacillus subtilis were produced at different osmotic pressures corresponding to water activities of 0.993 (standard), 0.970, and 0.950, using the two depressors (glycerol or NaCl). Sporulation of Bacillus subtilis was slower and reduced in quantity when the water activity was low, taking 4, 10, and 17 days for 0.993, 0.970, and 0.950 water activity, respectively. The spores produced at lower water activity were smaller and could germinate on agar medium at lower water activity than on standard spores. They were also more sensitive to heat (97 degrees C for 5-60 min) than the standard spores but their resistance to high hydrostatic pressure (350 MPa at 40 degrees C for 20 min to 4 h) was not altered. Our results showed that the water activity of the sporulation medium significantly affects spore properties including size, germination capacity, and resistance to heat but has no role in bacterial spore resistance to high hydrostatic pressure.  相似文献   

4.
Aim:  To investigate the effect of different growth conditions on Bacillus cereus cell and spore properties.
Methods and Results:  Bacillus cereus was grown on agar plates with different surface water conditions (wet and dry) or viscosity. Cell populations displayed different types of behaviour, and heterogeneity was manifested in cell motility and dimension. Spore populations were heterogeneous regarding their properties, namely size and thermal resistance. The smallest spores were produced from flagellated cells, which also displayed jet-motility, growing on the wettest agar. Cytometric analysis also revealed within the smallest spores a sub-population labelled by propidium iodide (PI), indicating that spore populations were partly damaged. Nonmotile cells grown on diffusion-limiting media were elongated and produced the least thermal-resistant spores.
Conclusions:  The micro-structural properties of the media were found to influence cell and spore properties. Abundant surface water enabled flagellar motility and resulted in a heterogeneous cell and spore population, the latter including small and damaged spores. High viscosity gave rise to filamentous cells and more heat-sensitive spores.
Significance and Impact of the Study:  This study provides useful information on conditions resulting in heterogeneous populations of damaged and heat-sensitive spores.  相似文献   

5.
The chemical forms of Clostridium botulinum 62A and 213B were prepared, and their heat resistances were determined in several heating media, including some low-acid foods. The heat resistance of C. botulinum spores can be manipulated up and down by changing chemical forms between the resistant calcium form and the sensitive hydrogen form. The resistant chemical form of type B spores has about three times the classical PO4 resistance at 235 F (112.8 C). As measured in peas and asparagus, both types of C. botulinum spores came directly from the culture at only a small fraction of the potential heat resistance shown by the same spores when chemically converted to the resistant form. The resistant spore form of both types (62A and 213B), when present in a low-acid food, can be sensitized to heating at the normal pH of the food.  相似文献   

6.
Effect of microwave radiation on Bacillus subtilis spores   总被引:4,自引:0,他引:4  
AIMS: To compare the killing efficacy and the effects exerted by microwaves and conventional heating on structural and molecular components of Bacillus subtilis spores. METHODS AND RESULTS: A microwave waveguide applicator was developed to generate a uniform and measurable distribution of the microwave electric-field amplitude. The applicator enabled the killing efficacy exerted by microwaves on B. subtilis spores to be evaluated in comparison with conventional heating at the same temperature value. The two treatments produced a similar kinetics of spore survival, while remarkably different effects on spore structures were seen. The cortex layer of the spores subjected to conductive heating was 10 times wider than that of the untreated spores; in contrast, the cortex of irradiated spores did not change. In addition, the heated spores were found to release appreciable amounts of dipicolinic acid (DPA) upon treatment, while extracellular DPA was completely undetectable in supernatants of the irradiated spores. These observations suggest that microwave radiation may promote the formation of stable complexes between DPA and other spore components (i.e. calcium ions); thus, making any release of DPA from irradiated spores undetectable. Indeed, while a decrease in measurable DPA concentrations was not produced by microwave radiation on pure DPA solutions, a significant lowering in DPA concentration was detected when this molecule was exposed to microwaves in the presence of either calcium ions or spore suspensions. CONCLUSIONS: Microwaves are as effective as conductive heating in killing B. subtilis spores, but the microwave E-field induces changes in the structural and/or molecular components of spores that differ from those attributable only to heat. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides information on the effect of microwaves on B. subtilis spore components.  相似文献   

7.
Chemical States of Bacterial Spores: Dry-Heat Resistance   总被引:12,自引:5,他引:7       下载免费PDF全文
Mature bacterial spores can be manipulated by chemical pretreatments between states sensitive and resistant to dry heat. The two chemical forms of the spore differ in dry-heat resistance by about an order of magnitude. Log survivor curves for each chemical state were approximately straight lines. The temperature dependence of dry-heat resistance for each chemical state was similar to that usually found for dry-heat resistance. A method of testing spore resistance to dry heat has been designed to minimize artifacts resulting from (i) change of chemical state during the test, (ii) effects of water vapor activity, (iii) incomplete recovery of spores from the test container and clumping of spores. Implications of the existence of different chemical resistance states for experimental strategy and testing of dry-heat resistance are discussed.  相似文献   

8.
Bacillus subtilis var. niger spores were produced on 20 different media. The spore yield from each medium and the dry-heat resistance at 160 C of the different spore populations were determined. The yield varied with a factor of 106 and the variation in D160-value was about 10-fold (<20 s190 s).A synthetic medium producing a high yield of spores with high dry-heat resistance was formulated. The concentrations of glucose, sucrose and calcium were found to be critical.  相似文献   

9.
Dipicolinic acid (DPA) comprises approximately 10% of the dry weight of spores of Bacillus species. Although DPA has long been implicated in spore resistance to wet heat and spore stability, definitive evidence on the role of this abundant molecule in spore properties has generally been lacking. Bacillus subtilis strain FB122 (sleB spoVF) produced very stable spores that lacked DPA, and sporulation of this strain with DPA yielded spores with nearly normal DPA levels. DPA-replete and DPA-less FB122 spores had similar levels of the DNA protective alpha/beta-type small acid-soluble spore proteins (SASP), but the DPA-less spores lacked SASP-gamma. The DPA-less FB122 spores exhibited similar UV resistance to the DPA-replete spores but had lower resistance to wet heat, dry heat, hydrogen peroxide, and desiccation. Neither wet heat nor hydrogen peroxide killed the DPA-less spores by DNA damage, but desiccation did. The inability to synthesize both DPA and most alpha/beta-type SASP in strain PS3664 (sspA sspB sleB spoVF) resulted in spores that lost viability during sporulation, at least in part due to DNA damage. DPA-less PS3664 spores were more sensitive to wet heat than either DPA-less FB122 spores or DPA-replete PS3664 spores, and the latter also retained viability during sporulation. These and previous results indicate that, in addition to alpha/beta-type SASP, DPA also is extremely important in spore resistance and stability and, further, that DPA has some specific role(s) in protecting spore DNA from damage. Specific roles for DPA in protecting spore DNA against damage may well have been a major driving force for the spore's accumulation of the high levels of this small molecule.  相似文献   

10.
Initiation of germination of heat-activated Streptomyces viridochromogenes spore occurs in media containing only calcium ions and organic buffer. The calcium-induced initiation of germination was accompanied by a decrease in absorbance of the spore suspension, an increased rate of endogenous metabolism, the loss of spore carbon, and the loss of heat resistance. Calcium amounts to 0.28% of the dry weight of freshly harvested spores. The amount of calcium remained the same after incubation of spores in water after heat activation. The spore content of calcium doubled after incubation in 0.5 mM CaCl2 for 5 min at 4 degrees C and during calcium-induced germination. Nearly all of the calcim appears to be bound to sites external to the spore membrane, since the chelating agents (ethylenedinitrilo) tetraacetic acid and arsenazo III removed virtually all of the calcium ions. The calcium ions must be present during the entire initiation of germination period. Germination ceases after an (ethylenedinitrilo) tetraacetic acid wash and begins again immediately after addition of calcium ions.  相似文献   

11.
Bacterial spore heat resistance at intermediate water activity, like aqueous and strictly dry heat resistance, is a property manipulatable by chemical pretreatments of the dormant mature spore. Heat resistances differ widely, and survival is prominently nonlogarithmic for both chemical forms of the spore. Log survival varies approximately as the cube of time for the resistant state of Bacillus stearothermophilus spores and as the square of time for the sensitive state. A method for measuring heat resistance at intermediate humidity was designed to provide direct and unequivocal control of water vapor concentration with quick equilibration, maintenance of known spore state, and dispersion of spores singly for valid survivor counting. Temperature characteristics such as z, E(a), and Q(10) cannot be determined in the usual sense (as a spore property) for spores encapsulated with a constant weight of water. Effect on spore survival of temperature induced changes of water activity in such systems is discussed.  相似文献   

12.
Having available the separate chemical resistance forms of Clostridium botulinum 62A spores from an investigation of the effect of spore form on wet heat resistance and also a method for measuring heat resistance at known water activities over the whole water activity (aw) range, we measured the heat resistance of these preparations at four different temperatures at each aw interval of 0.1 from aw 0 to aw 0.9. The required temperature dependence of resistance was calculated for each aw increment. The spore forms showed a low resistance at aw values of 0 and 0.7 of 0.9, with a rise in resistance in the range aw 0.1 to 0.5. The temperature dependence values behaved similarly.  相似文献   

13.
The metal ion content of spores of five Streptomyces species was studied. A general feature of this study was the finding of a very high calcium content (1.1 to 2.1% of the dry weight). Accumulation of calcium occurred preferentially during the sporulation process. Spore calcium was located in the integument fraction, and more than 95% of the calcium was removed from intact spores by ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid. Several divalent cations (Mg2+, Mn2+, Zn2+, and Fe2+) which induced darkening of spores and loss of heat resistance also caused the release of calcium from spores. In addition, darkening of spores was blocked by metabolic inhibitors, whereas calcium excretion was not affected. Two different categories of events in the initiation of germination may be differentiated; first, calcium release from spores which is not energy dependent and is a consequence of triggering of germination by some divalent cations, and second, some other events including loss of heat resistance, loss of spore refractility, and a decrease in absorbance, with at least one energy-dependent step.  相似文献   

14.
Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.  相似文献   

15.
S V Pronin 《Mikrobiologiia》1987,56(6):956-962
The elevated resistance of a Bacillus cereus spore suspension against the action of UV was found to depend on the quantity of resting forms initiated in the suspension prior to an irradiation. The resistance against UV increased 80-50 times if 60-90% of spores were initiated in the suspension as compared to that of the original resting forms. When suspensions containing 40% of non-germinated B. cereus spores were kept at 4 degrees C for 14 days, the latter became 10 and 14 times more resistant to elevated temperature (90 degrees C) and chloramine (2.5%), respectively, as compared to control intact spores. The higher resistance of non-germinated spores against the action of physical and chemical damaging agents was registered within the entire period of experiments (over three months). This phenomenon was not observed if ca. 100% of spores were initiated in a suspension. The resistance of initiated spores against the action of UV was 40 times lower than that of B. cereus resting forms.  相似文献   

16.
Studies of gene expression using fusions to lacZ demonstrated that the Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is in an operon with two downstream genes, spmA and spmB. Mutations affecting any one of these three genes resulted in the production of spores with reduced heat resistance. The cortex peptidoglycan in dacB mutant spores had more peptide side chains, a higher degree of peptide cross-linking, and possibly less muramic acid lactam than that of wild-type spores. These cortex structure parameters were normal in spmA and spmB mutant spores, but these spores did not attain normal spore core dehydration. This defect in spore core dehydration was exaggerated by the additional loss of dacB expression. However, loss of dacB alone did not alter the spore core water content. Spores produced by spmA and spmB mutants germinated faster than did those of the wild type. Spores produced by dacB mutants germinated normally but were delayed in spore outgrowth. Electron microscopy revealed a drastically altered appearance of the cortex in dacB mutants and a minor alteration in an spmA mutant. Measurements of electron micrographs indicate that the ratio of the spore protoplast volume to the sporoplast (protoplast-plus-cortex) volume was increased in dacB and spmA mutants. These results are consistent with spore core water content being the major determinant of spore heat resistance. The idea that loosely cross-linked, flexible cortex peptidoglycan has a mechanical activity involved in achieving spore core dehydration is not consistent with normal core dehydration in spores lacking only dacB.  相似文献   

17.
The purpose of this article is to highlight some areas of research with spores of bacteria of Firmicute species in which the methodology too commonly used is not optimal and generates misleading results. As a consequence, conclusions drawn from data obtained are often flawed or not appropriate. Topics covered in the article include the following: (i) the importance of using well-purified bacterial spores in studies on spore resistance, composition, killing, disinfection and germination; (ii) methods for obtaining good purification of spores of various species; (iii) appropriate experimental approaches to determine mechanisms of spore resistance and spore killing by a variety of agents, as well as known mechanisms of spore resistance and killing; (iv) common errors made in drawing conclusions about spore killing by various agents, including failure to neutralize chemical agents before plating for viable spore enumeration, and equating correlations between changes in spore properties accompanying spore killing with causation. It is hoped that a consideration of these topics will improve the quality of spore research going forward.  相似文献   

18.
The effect of calcium on germination of coat-modified Bacillus cereus T spores was investigated. Coat-modified spores produced either by chemical extraction (SDS-DTT-treated spores) or by mutagenesis (10LD mutant spores) were unable to germinate in response to inosine. While SDS-DTT-treated spores could germinate slowly in the presence of L-alanine, 10LD mutant spores could not germinate at all. The lost or reduced germinability of coat-modified spores was restored when exogenous Ca2+ was supplemented to the germination media. The calcium requirement of coat-modified spores for germination was fairly specific. The simultaneous presence of germinant with Ca2+ was also required for germination of coat-modified spores. The optimal recovery of germinability was observed in the presence of 1.0 mM of calcium acetate. The calcium requirement itself was remarkably diminished under the condition in which L-alanine and a certain purine nucleoside analog, adenosine or inosine, coexisted. The lost or diminished germinability observed in SDS-DTT-treated spores or 10LD mutant spores may be attributed to the loss of calcium associated with the spore integuments.  相似文献   

19.
Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca–DPA). Spores excrete Ca–DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported.  相似文献   

20.
Spectroscopic microanalysis of the element-characteristic X rays produced by a scanning electron microprobe was employed to detect calcium and carbon in both intact and thin-sectioned spores of Bacillus cereus T and B. megaterium QM B1551. Linear scan profiles and multilinear scan images of the X-ray emissions for calcium (Ca(Kalpha)) were compared with those for carbon (C(Kalpha)) as an index of mass. Location was accomplished by stereological comparisons with secondary electron images and conventional transmission electron micrographs. Although the elements could be detected at the attogram level theoretically, spatial resolution was limited to approximately 500 to 1,000 nm in an intact spore, e.g., by the primary electron beam diameter, the electron-excited spore microvolume, and the type of specimen support. The resolution was improved to approximately 100 to 200 nm by use of thin-sectioned spores, with precautions to prevent calcium leakage from the specimen during preparations. In both intact and sectioned spores, calcium was distributed throughout the spore, similarly to carbon, and concentrated mainly in a central region corresponding to the spore protoplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号