首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:观察长期睡眠剥夺后小鼠蓝斑核线粒体氧化应激状态的变化以及蓝斑核对前扣带回皮质投射的影响。方法:采用“新环境”法建立睡眠剥夺模型。观察小鼠经过5d睡眠剥夺后蓝斑核线粒体氧化应激调控关键酶Sirtuin亚型3(SIRT3)、线粒体氧化应激标记物热休克蛋白60(HSP60)表达量以及前扣带回皮质酪氨酸羟化酶样投射的变化情况。结果:长期睡眠剥夺后,与对照组比较,模型组小鼠蓝斑核SIRT3的表达量显著下调,同时HSP60的表达量则显著上调。此外,模型组前扣带回皮质酪氨酸羟化酶样投射面积百分比显著降低。结论:长期睡眠剥夺通过降低SIRT3的表达影响蓝斑核线粒体氧化应激水平,可能引起蓝斑核对前扣带回皮质投射的丢失。  相似文献   

2.
1. Limited coagulations of the locus coeruleus and subcoeruleus nuclei have been performed in rats and the sleep-waking cycle was continuously monitored during 9 days. The cortical and diencephalic noradrenaline content was mesured at the termination of the experiment, on the 10th post lesion day. 2. The bilateral destruction of the locus coeruleus is followed by the appearance of a uro-genital syndrome consisting of hema turia, bladder distension and penile erection. The states of sleep are disturbed during the first two days (increase of slow-wave sleep and decrease of paradoxical sleep times) and thereafter return to normal. Additionally, an hyperthermia appears during the third experimental day. The cortical and diencephalic noradrenaline content decrease to 70%. 3. The simultaneous lesion of both locus coeruleus and subcoeruleus nuclei is followed by the appearance of an aphagia adipsia syndrome in addition to the uro-genital syndrome. After these lesions, it is no long possible to find paradoxical sleep episodes in polygraphic recordings while the amount of slow wave sleep is normal. Cortical and diencephalic noradrenaline content decrease more than 50%. 4. In normal rats direct injection of 6 hydroxydopamine directly in both locus coeruleus and nuclei subcoeruleus had no discernable effects either on the behaviour or on the states of sleep. The cortical noradrenaline content decreased 30% below control values. 5. These results are consistent with but do not prove the hypothesis that part of the pontine tegmentum might play an important role in triggering paradoxical sleep episodes. The role of these regions in the regulation of internal temperature, food consumption and bladder motricity is also discussed.  相似文献   

3.
In the rat, alpha-Methyldopa (alpha-MD, 50 mg/kg i.p.) induced during 8 hrs. an important reduction of paradoxical sleep (PS) and an increase of light slow waves sleep (SWS1). These effects were reversed by intraventricular infusion of cerebrospinal fluid (CSF) from PS-deprived donor rats, and PS restauration depended directly on the duration of the deprivation in the donor. It is probable that hypnogenic substances accumulate in the CSF during PS-deprivation, and that these factors can by-pass the noradrenergic step in the chain of biochemical events normally leading to the appearance of PS.  相似文献   

4.
España RA  Berridge CW  Gammie SC 《Peptides》2004,25(11):1927-1934
The hypocretins modulate arousal via actions across multiple terminal fields. Thus, alterations in hypocretin neurotransmission may contribute to altered sleep patterns observed during lactation. This study examined whether lactation is associated with alterations in the number of hypocretin neurons and in diurnal Fos-immunoreactivity within hypocretin neurons in female mice. Alterations in Fos-immunoreactivity were also examined within two hypocretin terminal regions; the medial preoptic area and the locus coeruleus. Fos-immunoreactivity was increased within hypocretin neurons and the medial preoptic area in lactating females. No differences were observed in the number of hypocretin neurons or in Fos-immunoreactivity within the locus coeruleus.  相似文献   

5.
A N Panov  U M Malikov 《Tsitologiia》1981,23(12):1381-1385
A 24 hours paradoxical sleep deprivation (PSD) with rats resulted in lowering the RNA content in neurons and gliocytes of n. raphé dorsalis by 31 and 18%, resp.; the protein content remaining unchanged. A 48 hours PSD reduced RNA and protein contents in neurons by 31%; in gliocytes both these substances being on the control level. In the neurons of n. raphé pontis, by the end of the 1st day of PSD the contents of both RNA and protein were seen reduced by 16 and 28%, resp.; however, by the end of the 2nd day their levels well compared with those in the control rats. There was a phase oscillation of protein content in gliocytes: from - 19%, on the first day of PSD, to +19%, on the 2nd day. There is a great resemblance in response to PSD between the adrenergic nucleus - locus coeruleus - and n. raphé pontis, whereas their responses differ from that of the serotoninergic n. raphé dorsalis.  相似文献   

6.
Rats were deprived of sleep by placing them for 36 hours in a slowly moving drum. After this procedure, during recovery sleep, the latency of onset of the first rhombencephalic - paradoxical sleep period decreased and the proportion of telencephalic/rhombencephalic - slow wave sleep reversed (during the first hour of recovery sleep). Repeated administration during the deprivation period of physostigmine (0,5 mg/kg i. p. in 30 min intervals 20-30 times) inducing in waking animals in EEG pattern close to that of rhombencephalic sleep, or atropine (1 mg/kg i. p. in 60 min intervals 10-15 times) evoking an activity resembling telencephalic sleep, did not change the above measures of recovery sleep. Pharmacologically induced sleep-like patterns did not substitute for the sleep the rats were deprived off.  相似文献   

7.
8.
88 adult male rats were divided into 9 groups. Group I and II served as controls. The rats of group III were repeatedly aroused during 4 days at the very onset of each paradoxical sleep period by direct MRF stimulation. This deprivation reduced the daily amount of paradoxical sleep by 70%, while the slow wave sleep was reduced by 10% only. In group IV, the animals were given food and water for one hour a day only. Groups V and VI were subjected to immobilization and cold stress, respectively. Groups VII, VIII and IX were deprived of paradoxical sleep on platforms of 15, 11 and 6.5 cm in diameter, respectively. Stress was estimated by the classical Selye's triad: weight of adrenals and thymus and gastric ulceration. Emotionality was measured in the open field and also by self-stimulation of the lateral hypothalamus. Neither emotional behaviour disturbances nor stress features were found after paradoxical sleep deprivation in the group III. Moreover, this deprivation induced a slight, though significant, reduction in adrenals weight. Also, no changes in emotional behaviour were noted in the stress-exposed group V and VI. Only the interplay between REM-sleep deprivation and stress on the platforms in groups VII, VIII and especially IX led to a considerable shift in emotionality.  相似文献   

9.
Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8).We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus.In addition, compared to control, disturbances of the sleep–wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions.In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.  相似文献   

10.
Sleep deprivation is now recognized as an increasingly common condition inherent to modern society, and one that in many ways, is detrimental to certain physiological systems, namely, immune function. Although sleep is now viewed by a significant body of researchers as being essential for the proper working of a host of defense systems, the consequences of a lack of sleep on immune function remains to be fully comprehended. The aim of the current study was to investigate how paradoxical sleep deprivation (PSD) for 24 and 96 h and sleep restriction (SR) for 21 days by the modified multiple-platform method, and their respective 24-h recovery periods, affect immune activation in rats. To this end, we assessed circulating white blood cell counts, lymphocyte count within immune organs, as well as Ig and complement production. The data revealed that PSD for 96 h increased complement C3 and corticosterone concentration in relation to the control group. In contrast, the spleen weight, total leukocytes, and lymphocytes decreased during SR for 21 days when compared with the control group, although production of a certain class of immunoglobulin, the IgM, did increase. After recovery sleep, lymphocyte count in axillary lymph nodes grew when rats had rebound sleep after PSD for 24 h, neutrophils increased after PSD 96 h and lymphocytes numbers were higher after SR 21 days. Such alterations during sleep deprivation suggest only minor alterations of nonspecific immune parameters during acute PSD, and a significant impairment in cellular response during chronic SR.  相似文献   

11.
The intratissular injection of ibotenic acid into the ventrolateral part of the posterior hypothalamus induced a dramatic biphasic and transient hypersomnia immediately after disappearance of the anaesthesia (14 to 24 hrs. after injection). The duration of hypersomnia was related to the dose of neurotoxin injected. Its first period was characterized by an increase in paradoxical sleep (PS) (300%). Then, during the second phase, PS disappeared and there was a subsequent increase of slow wave sleep (SWS) (60%). Finally, on the third day, all cats recovered control level of PS and SWS.  相似文献   

12.
After administration of delta-sleep inducing peptide to cats and albino rats the decrease of total duration of paradoxical phase of sleep is more significant than prolongation of slow-wave sleep. Similar disturbances in the behaviour of animals were observed during deprivation of paradoxical sleep. This data strongly suggest that the DSIP influences the most ancient mechanisms of sleep regulation.  相似文献   

13.
A study was made of brain nucleotides and glycolytic intermediates in paradoxical sleep (PS)-deprived and recovery-sleeping rats. It was observed that PS deprivation of 24 h produced a fall in glucose, glucose 6-phosphate and pyruvate in cerebral frontal lobes. After three hours of recovery sleep all values returned toward their predeprivational levels. In cerebellar hemispheres ATP was increased, while glucose 6-phosphate and pyruvate were decreased. After three hours of recovery sleep, glucose 6-phosphate was increased and pyruvate decreased, indicating restoration of glycogen and creatine phosphate respectively.  相似文献   

14.
A neurophysiological study was made of the effects of partial and complete paradoxial sleep deprivation by substituting episodes of active wakefulness for spells of paradoxical sleep (PS) of the same duration in the sleep-wake cycle. Neither accumulated need for paradoxical sleep (culminating in increased onset of PS during deprivation), PS rebound during the post-deprivation period, nor dissociation of the stages of paradoxical sleep resulting in their intervening individually at unaccustomed points in the sleep-wake cycle were observed during our experimental procedure. The phenomenon of self-deprivation, increased heart rate, eye movements, and pontogeniculooccipital (PGO) action potentials also failed to occur during the post-deprivation period. It is postulated that PS requirement and the need for periods of wakefulness stem from the same neurochemical alterations.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 20–28, January–February, 1988.  相似文献   

15.
Arterial blood pressure, chest movement, electroencephalogram, and electromyogram were monitored in six normotensive Sprague-Dawley rats for 4 h/day 3 days before and 4 days after 114 h of rapid-eye-movement (REM) sleep deprivation. During recovery sleep immediately after REM sleep deprivation (RD), there was a significant increase in the amount of time spent in REM sleep. During this rebound in REM sleep, there was a significant rise (26%) in heart rate in wakefulness, non-REM sleep, and REM sleep during the first 4 h after RD. Systolic blood pressure was also significantly elevated (14%) but only during wakefulness before recovery sleep. Rats with the greatest waking systolic blood pressure after RD had the lowest REM sleep rebound in the 4 h immediately after RD (r = -0.885, P less than 0.05). The rise in heart rate, systolic blood pressure, and REM sleep time evident on day 1 immediately after RD was absent on recovery days 2-4. The respiratory rate tended to be higher throughout the recovery period in every state of consciousness; however, these values never reached the level of significance. In the initial recovery sleep period, regulation of heart rate was more disrupted by REM sleep deprivation than either arterial blood pressure or respiratory rate.  相似文献   

16.
ADP-ribosylation factor (Arf)-related protein 1 (ARFRP1) is a membrane-associated GTPase, which inhibits the Arf/Sec7-dependent activation of phospholipase D and belongs to the Arf-like (Arl) GTPases. Although ARFRP1 is involved in post-Golgi membrane trafficking and its lack leads to embryonic lethality, little is known about its possible function in the central nervous system. To obtain more knowledge about ARFRP1, we have characterized its mRNA distribution in adult mouse brain by in situ hybridization and real-time PCR. We observed a widespread distribution of ARFRP1-mRNA, with the highest levels in cerebral cortex, thalamic nuclei, colliculus, substantia nigra and granule cell layer of cerebellum. Moderate levels were observed in some amygdaloid nuclei, CA2 area and dentate gyrus of hippocampus, endopiriform nuclei, globus pallidus, striatum, molecular layer of cerebellum, and locus coeruleus, whereas no expression was detected in hypothalamic nuclei, CA1 and CA3 areas of hippocampus, zona incerta. A significant decrease of ARFRP1-mRNA was observed in cerebral cortex following sleep deprivation, whereas no change was observed in cerebellar cortex, locus courelus, brainstem, hippocampus and pontine nuclei. This study provides the first detailed analysis of the regional distribution of ARFRP1 in the mouse brain and a quantitative view of its changes following sleep deprivation.  相似文献   

17.
Proteases are essential either for the release of neuropeptides from active or inactive proteins or for their inactivation. Neuropeptides have a fundamental role in sleep-wake cycle regulation and their actions are also likely to be regulated by proteolytic processing. Using fluorescence resonance energy transfer substrates, specific protease inhibitors and real-time PCR we demonstrate changes in angiotensin I-converting enzyme (ACE) expression and proteolytic activity in the central nervous system in an animal model of paradoxical sleep deprivation during 96 h (PSD). Male rats were distributed into five groups (PSD, 24 h, 48 h and 96 h of sleep recovery after PSD and control). ACE activity and mRNA levels were measured in hypothalamus, hippocampus, brainstem, cerebral cortex and striatum tissue extracts. In the hypothalamus, the significant decrease in activity and mRNA levels, after PSD, was only totally reversed after 96 h of sleep recovery. In the brainstem and hippocampus, although significant, changes in mRNA do not parallel changes in ACE specific activity. Changes in ACE activity could affect angiotensin II generation, angiotensin 1-7, bradykinin and opioid peptides metabolism. ACE expression and activity modifications are likely related to some of the physiological changes (cardiovascular, stress, cognition, metabolism function, water and energy balance) observed during and after sleep deprivation.  相似文献   

18.
Abstract— The effect of sleep deprivation on the in vivo and in vitro tritiated amino acid incorporation into brain proteins was studied in the rat at three age levels. Sleep deprivation was induced either by water tank or handling methods. Three experimental groups of animals were used: control, sleep deprived and post deprivation sleeping rats.
A significant decrease of protein synthesis was found in the cerebellum, telencephalon and in crude subcellular fractions of brainstem of adult rats selectively deprived of paradoxical sleep. However, no alteration of protein synthesis was observed either in vivo or in vitro , in the same brain regions or in the liver after the rebound of paradoxical sleep following deprivation.
In four crude subcellular protein fractions a specific increase of the in vitro labelled amino acid incorporation was observed in the brain stem of 24-day-old rats allowed to recuperate after sleep deprivation as compared with the deprived rats. No significant changes were seen in the telencephalon.
No alteration of incorporation was found in 7-day-old rats deprived of sleep.
The possible functional significance of these results is discussed in relation to stress and to variations in the size of the precursor pool for protein synthesis.  相似文献   

19.
Recent studies have pointed out biochemical and pharmacological phenomena associated with the mechanism or mechanisms of sleep, especially in its paradoxical phase (Jouvet, 1964; Mandel, 1964). Our previous experiments have shown that paradoxical sleep (PS) deprivation leads to the fall of total glycogen content in certain regions of the brains of cats (Mr?ulja, Raki? and Radulova?ki, 1967; Mr?ulja and Raki?, 1968) and rats (Karad?i? and Mr?ulja, 1969). It was shown that changes of glycogen content correspond to PS deprivation and that PS deprivation is a specific stress to which the CNS responds selectively. Alterations in the glycogen concentration in a number of different brain structures lead us to conclude that neural areas affected by PS deprivation are widely distributed. Jouvet (1962) was one of the first to suggest that a neurohumoral mechanism may be concerned in the control of and characteristics of sleep. Experiments have shown that both cholinergic and adrenergic mechanisms may be involved in the initiation, maintenance and control of sleep. It has also been pointed out that paradoxical sleep can be started and maintained by cholinergic drugs (Matsuzaki, Okada and Shuto, 1967, 1968), blocked or reduced by anticholinergic compounds (Matsuzaki et al., 1968), and stimulated by noradrenaline or by its precursor, DOPA (Matsumoto and Jouvet, 1964). Bowers, Hartmann and Freedman (1966) showed that the ACh level of the rat telencephalon decreases with PS deprivation while the levels of norpinephrine and serotonin remain the same (Barchas and Freedman, 1963). More recently, Pujol, Mouret, Jouvet and Glowinski (1968) found the increased turnover of cerebral norepinephrine during rebound of PS in the rat. It is also of interest to point out that probably both adrenergic and cholinergic processes participate in the glycogenolytic effect of physostigmine (Mr?ulja, Terzi? and Varagi?, 1968). It was suggested that physostigmine initiates the cholinergic processes which then trigger off adrenergic processes. The aim in the present work was to determine the glycogen content in certain brain regions of rats which were subjected to PS deprivation lasting 72 hr and treated with some cholinergic or beta-adrenergic blocking agents, as well as with a catecholamine depleting drug.  相似文献   

20.
Influence of electrical stimulation of the medial preoptic area of cats on characteristics of paradoxical sleep and activity of medial preoptic neurons were studied in the course of sleep-waking cycle. Low-frequency stimulation of this structure in the state of slow-wave sleep evoked short-latency electrocortical desynchronization and induced transition to paradoxical sleep or paradocical sleep-like state. The same stimulation during the whole period of paradoxical sleep results in a reduction of its duration, practically complete disappearance of tonic stage, and increase in the density of rapid eye movements in phasic stage. The vast majority of meurons in the medial preoptic area decreased their firing rates during quiet waking and slow-wave sleep and dramatically increased their activity during paradoxical sleep. More than 50% of such neurons displayed activation 20-70 s prior to the appearance of electrocorticographic correlates of paradoxical sleep. Some neurons were selectively active during paradoxical sleep. Approximately 50% of cells increased their firing rates a few seconds prior to and/or during series of rapid eye movements. The results suggest that the medial preoptic area contains the units of the executive system (network) of paradoxical sleep and are involved in the mechanisms of neocortical desynchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号