首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 microM of palmitate did not affect cell viability but significantly reduced FA oxidation by approximately 26.5%, approximately 43.5%, approximately 50%, and approximately 47%, respectively. Interestingly, this occurred despite significant increases in AMPK ( approximately 2.5-fold) and ACC ( approximately 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity ( approximately 38-60%). Low concentrations of palmitate (50-100 microM) caused an increase ( approximately 30%) in CPT-1 activity. However, as the concentration of palmitate increased, CPT-1 activity decreased by approximately 32% after exposure for 8 h to 800 microM of palmitate. Although FA uptake was reduced ( approximately 35%) in cells exposed to increasing palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values approximately 2.3-, approximately 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 microM palmitate, respectively. Interestingly, myotubes exposed to 400 microM of palmitate for 1 h increased basal glucose uptake and glycogen synthesis by approximately 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8 h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake ( approximately 65%) and glycogen synthesis ( approximately 30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs, such as in obesity and Type 2 Diabetes.  相似文献   

2.
The role of ketone bodies in myocardial substrate oxidation was examined using freshly isolated Ca2+-tolerant heart myocytes, beta-hydroxybutyrate (beta OHB) inhibited lactate oxidation by the myocytes by 30-60%, and the inhibition was concentration dependent. Palmitate oxidation was also markedly decreased, whereas octanoate oxidation was only minimally affected by the presence of beta OHB. Lactate, octanoate, or palmitate had little, if any, effect on beta OHB oxidation. beta OHB oxidation was reduced by 22-28% in myocytes isolated from chronically diabetic rats, whereas the oxidation of palmitate remained similar to the controls. However, beta OHB still inhibited palmitate oxidation to the same extent as in the control cells. Our data support the role of beta OHB as a physiologic regulator of myocardial substrate metabolism.  相似文献   

3.
In the human heart, although all substrates compete for energy production, fatty acids (FA) represent the main substrate for ATP production. In the healthy heart, a balance between FA and carbohydrate utilization ensures that energy supply matches demand. This study was carried out to evaluate, in a model of spontaneously beating neonatal rat cardiomyocytes in culture, the hypothesis that glycerol could play a central role in the metabolic control of the routes involving long chain FAs and may then affect the balance between beta-oxidation and glucose oxidation. The intracellular-free glycerol significantly increased with extracellular glycerol concentration (0 to 660 microM). The synthesis of phospholipids was significantly increased in parallel with both extracellular glycerol (1.5 and 14.8 nmol glycerol/mg protein, at 82 and 660 microM of extracellular glycerol, respectively). The oxidation of glycerol increased proportionally to extracellular glycerol concentration (from 1 to 3 nmol glycerol/mg protein, at 82 microM and 660 microM extracellular glycerol, respectively, P<0.001). At its maximum, this oxidation represented 15% of the glucose oxidation, which was not affected by glycerol extracellular supply or intracellular availability. Conversely, extracellular glycerol significantly reduced the palmitate oxidation above (-47% at 660 microM glycerol), but not octanoate oxidation. Investigations on the mechanism of the decreased palmitate oxidation reveals a glycerol-dependent increase in malonyl-CoA associated with a significant decrease in CPT-1 activity which accounts for the difference between palmitate and octanoate. These results clearly demonstrate the importance of glycerol in regulating the cardiac metabolic pathways and energy balance.  相似文献   

4.
The adenosine analogues 5'-(N-ethyl)carboxamidoadenosine (NECA) and N6-(phenylisopropyl)adenosine (PIA) activate glycogen phosphorylase 5-fold and 4.2-fold respectively in rat hepatocytes incubated in the absence of endogenous adenosine. Half-maximally effective concentrations are 0.5 microM for NECA and 20 microM for PIA, demonstrating the presence of A2-adenosine receptors. Exogenous adenosine activates phosphorylase 4.6-fold, but high rates of adenosine disappearance from the medium render estimates of its half-maximally effective concentration unreliable. These effects of NECA and adenosine are inhibited by 0.1 mM-caffeine. Activation of phosphorylase by a physiological concentration of adenosine (3.3 microM) was 50% inhibited by a physiological concentration of caffeine (35 microM).  相似文献   

5.
Oxidation rates of palmitate and activities of the mitochondrial marker enzymes cytochrome c oxidase and citrate synthase have been determined in homogenates, isolated mitochondria and slices of human and rat heart and in calcium-tolerant rat cardiac myocytes. Homogenates and mitochondria from rat heart showed a 6- and 2.5-fold higher palmitate oxidation rate than the corresponding preparations from human heart. From the palmitate oxidation rates and cytochrome c oxidase and citrate synthase activities as parameters, the mitochondrial protein contents of human and rat heart were calculated to be about 18 and 45 mg/g wet weight, respectively. Based on citrate synthase activities, the fatty acid oxidation rates were about the same in homogenates and isolated mitochondria, much lower in myocytes and lowest in slices. In the cellular systems the palmitate molecule was more completely oxidized than in homogenates or isolated mitochondria. Fatty acid oxidation rates were concentration-dependent in slices, but not with myocytes. With the cellular systems, palmitate oxidation was synergistically stimulated by the addition of carnitine, coenzyme A and ATP to the incubation medium. This stimulation could be attributed only partly to an increased oxidation in damaged cells.  相似文献   

6.
We investigated palmitate uptake and utilization by contracting cardiac myocytes in suspension to explore the link between long-chain fatty acid (FA) uptake and cellular metabolism, in particular the role of fatty acid translocase (FAT)/CD36-mediated transsarcolemmal FA transport. For this, an experimental setup was developed to electrically stimulate cardiomyocytes in multiple parallel incubations. Electrostimulation at voltages > or =170 V resulted in cellular contraction with no detrimental effect on cellular integrity. At 200 V and 4 Hz, palmitate uptake (measured after 3-min incubation) was enhanced 1.5-fold. In both quiescent and contracting myocytes, after their uptake, palmitate was largely and rapidly esterified, mainly into triacylglycerols. Palmitate oxidation (measured after 30 min) contributed to 22% of palmitate taken up by quiescent cardiomyocytes and, after stimulation at 4 Hz, was increased 2.8-fold to contribute to 39% of palmitate utilization. The electrostimulation-mediated increase in palmitate uptake was blocked in the presence of either verapamil, a contraction inhibitor, or sulfo-N-succinimidyl-FA esters, specific inhibitors of FAT/CD36. These data indicate that, in contracting cardiac myocytes, palmitate uptake is increased due to increased flux through FAT/CD36.  相似文献   

7.
The stimulation of reactive oxygen metabolite production from human polymorphonuclear leucocytes by chemotactic peptide (fMet-Leu-Phe) was inhibited by adenosine with a K0.5 of 0.6 microM. Dipyridamole (0.1 microM), an inhibitor of adenosine uptake, did not prevent the effect of adenosine. Non-metabolizable analogues could substitute for adenosine in the potency order N-ethoxycarboxamideadenosine greater than 2-chloroadenosine greater than adenosine greater than L-N6-(phenylisopropyl)adenosine = D-N6-(phenylisopropyl)adenosine, which is characteristic of an A2 adenosine receptor. The effects of adenosine, 2-chloroadenosine and N-ethoxycarboxamideadenosine were reversed by 8-phenyltheophylline. When endocytosis was inhibited with cytochalasin B, cells were still susceptible to adenosine receptor agonists. 2-Chloroadenosine (10 microM) reduced the activation of respiration in response to chemotactic peptide from 3.3-fold to 1.4-fold. Activation of reactive oxygen metabolite production in response to latex beads was not reversed by adenosine or its analogues. It was concluded that adenosine acts at an A2 adenosine receptor to antagonize the activation of polymorphonuclear leucocytes by those stimuli, such as chemotactic peptide, which cause an increase in the intracellular free Ca2+ concentration.  相似文献   

8.
We examined the movement of [3H]palmitate across giant sarcolemmal vesicles prepared from red and white muscle of rainbow trout (Oncorhynchus mykiss). Red and white muscle fatty acid carriers have similar affinities for palmitate (apparent Km = 26 +/- 6 and 33 +/- 8 nM, respectively); however, red muscle has a higher maximal uptake compared with white muscle (Vmax = 476 +/- 41 vs. 229 +/- 23 pmol.mg protein-1.s-1, respectively). Phloretin (250 microM) inhibited palmitate influx in red and white muscle vesicles by approximately 40%, HgCl2 (2.5 mM) inhibited palmitate uptake by 20-30%, and the anion-exchange inhibitor DIDS (250 microM) inhibited palmitate influx in red and white muscle vesicles by approximately 15 and 30%, respectively. Western blot analysis of red and white muscle vesicles did not detect a mammalian-type fatty acid transporter (FAT); however, preincubation of vesicles with sulfo-N-succinimidyloleate, a specific inhibitor of FAT in rats, reduced palmitate uptake in red and white muscle vesicles by approximately 15 and 25%, respectively. A mammalian-type plasma membrane fatty acid-binding protein was identified in trout muscle using Western blotting, but the protein differed in size between red and white muscle. At low concentrations of free palmitate (2.5 nM), addition of high concentrations (111 microM total) of oleate (18:0) caused approximately 50% reduction in palmitate uptake by red and white muscle vesicles, but high concentrations (100 microM) of octanoate (8:0) caused no inhibition of uptake. Five days of aerobic swimming at approximately 2 body lengths/s and 9 days of chronic cortisol elevation in vivo, both of which stimulate lipid metabolism, had no effect on the rate of palmitate movement in red or white muscle vesicles.  相似文献   

9.
The impact of type 2 diabetes on the ability of muscle to accumulate and dispose of fatty acids and triglycerides was evaluated in cultured muscle cells from nondiabetic (ND) and type 2 diabetic (T2D) subjects. In the presence of 5 microM palmitate, T2D muscle cells accumulated less lipid than ND cells (11.5 +/- 1.2 vs. 15.1 +/- 1.4 nmol/mg protein, P < 0.05). Chronic treatment (4 days) with the peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist troglitazone increased palmitate accumulation, normalizing uptake in T2D cells. There were no significant differences between groups with regard to the relative incorporation of palmitate into neutral lipid species. This distribution was also unaffected by troglitazone treatment. beta-Oxidation of both long-chain (palmitate) and medium-chain (octanoate) fatty acids in T2D muscle cells was reduced by approximately 40% compared with ND cells. Palmitate oxidation occurred primarily in mitochondrial ( approximately 40-50% of total) and peroxisomal (20-30%) compartments. The diabetes-related defect in palmitate oxidation was localized to the mitochondrial component. Both palmitate and octanoate oxidation were stimulated by a series of thiazolidinediones. Oxidation in T2D muscle cells was normalized after treatment. Troglitazone increased the mitochondrial component of palmitate oxidation. Skeletal muscle cells from T2D subjects express defects in free fatty acid metabolism that are retained in vitro, most importantly defects in beta-oxidation. These defects can be corrected by treatment with PPARgamma agonists. Augmentation of fatty acid disposal in skeletal muscle, potentially reducing intramyocellular triglyceride content, may represent one mechanism for the lipid-lowering and insulin-sensitizing effects of thiazolidinediones.  相似文献   

10.
11.
The unidirectional fluxes of palmitate across the liver cell membrane and metabolic uptake rates were measured employing the multiple-indicator dilution technique. The following results were obtained: (1) Influx and net uptake rates do not vary proportionally to each other when albumin and palmitate concentrations are varied. (2) Efflux is significant for albumin concentrations in the range between 1.5 and 500 microM. (3) At 150 microM albumin net uptake rates are proportional to the total (bound plus free) extracellular palmitate concentration in the range from 10 to 600 microM; the dependence of influx rates on the palmitate concentration is rather concave up. (4) When albumin and palmitate are both varied at an equimolar ratio, pseudo-saturation appears in the net uptake rates; the influx rates also show pseudo-saturation, but with a declining tendency at the higher concentrations. (5) The intracellular palmitate concentration is strongly influenced by albumin. At very low concentrations of the protein (1.5 microM) the intracellular concentration is practically equal to the extracellular one; at physiological albumin concentrations, however, the intracellular palmitate concentration is less than 2% of the extracellular one. (6) Saturation of net uptake with respect to the intracellular palmitate concentration was not observed with concentrations up to 46 microM.  相似文献   

12.
The effects of long-chain (LC) fatty acids on rate of heat production (heat rate) and mitochondrial membrane potential (DeltaPsi) of intact guinea pig cardiac muscle were investigated at 37 degrees C. Heat rate of ventricular trabeculae was measured with microcalorimetry, and DeltaPsi was monitored in isolated ventricular myocytes with either JC-1 or tetramethylrhodamine ethyl ester (TMRE). Methyl-beta-cyclodextrin was used as fatty acid carrier. Application of 400 microM oleate or linoleate increased resting heat rate by approximately 30% and approximately 25%, respectively. When LC fatty acid was supplied as sole metabolic substrate, resting heat rate was decreased by 3-mercaptopropionic acid. In TMRE-loaded myocytes, neither 40-80 microM oleate nor 40 microM linoleate affected DeltaPsi. At a higher concentration (400 microM) both oleate and linoleate increased TMRE fluorescence by approximately 20% of maximum, obtained using 2,4-dinitrophenol (100 microM), indicating a depolarization of the inner mitochondrial membrane. We conclude that LC fatty acids, at sufficiently high concentration, increase heat rate and decrease DeltaPsi in intact cardiac muscle, consistent with a protonophoric uncoupling action. These effects may contribute to the high metabolic rate after reperfusion of postischemic myocardium.  相似文献   

13.
Receptor-stimulated hydrolysis of inositol phospholipids was studied in atrial and ventricular myocytes isolated from guinea-pigs. Membrane phospholipids were labelled with [3H] inositol and their conversion to [3H] labelled inositol phosphate was measured in the presence of Li+ (10 mM). In the absence of added stimulatory hormones or neurotransmitters, little inositol phosphate accumulation was observed. Acetylcholine and carbachol stimulated inositol phosphate accumulation with a maximum of more than 12 times the unstimulated values in atrial myocytes and 7 times in ventricular myocytes. The EC50 values and 95% confidence limits for acetylcholine and carbachol were 0.9 microM (0.2 - 5.3) and 8.8 microM (6.3 - 11.8) in atria and 0.6 M (0.5 - 0.8) and 10.0 M (1.8 - 55.9) in ventricles, respectively. Oxotremorine was a partial agonist in stimulating inositol phosphate accumulation in both atrial and ventricular myocytes. The vasoactive peptides angiotensin II and vasopressin also stimulated inositol phosphate accumulation but the maximum effect was lower than that mediated through muscarinic receptors. However, the adenosine analogues, L-N6-phenylisopropyladenosine and 5'N-ethylcarboxamidoadenosine which, like muscarinic agonists depress cardiac contractility, did not affect inositol phosphate accumulation at concentrations up to 10(-4)M.  相似文献   

14.
Elevated plasma lipid and nonesterified fatty acid concentrations reduce insulin-mediated glucose disposal in skeletal muscle. Cultured myoblasts from 21 subjects were studied for rates of palmitate oxidation and the effect of palmitate on glycogen synthase activity at the end of an 18-h incubation in serum- and glucose-free media. Oxidation rates of 40 microM palmitate in cultured myoblasts correlated with the fasting glucose (r = 0.71, P = 0.001), log fasting insulin (r = 0.52, P = 0.03), and insulin-mediated glucose storage rate (r = -0.50, P = 0.04) of the muscle donors. Myoblast glycogen synthase activity can be regulated by 240 microM palmitate, but the changes are associated with the basal respiratory quotient and not with the insulin resistance of the muscle donor. These results indicate that myoblasts producing elevated palmitate oxidation rates in vitro can be used to identify skeletal muscle abnormalities which are primary contributors to insulin resistance in vivo. Effects of 240 microM palmitate on myoblast glycogen synthase activity appear to be mechanistically different from the relationship between myoblast palmitate oxidation rates and insulin resistance of the muscle donor.  相似文献   

15.
This work was designed to characterize the adenosine receptor (A1 or A2) involved in glucagon secretion. The most potent adenosine analogues on A1 receptors are the N6 substituted compounds, among them N6-phenylisopropyladenosine (PIA); furthermore L-PIA is 50 to 100 times more potent than D-PIA on the A1 receptor, whereas it is 3 to 5 times more potent on the A2 receptor; thus the A1 receptor shows a much higher stereoselectivity. The effects of L-PIA and D-PIA were studied on glucagon secretion from the isolated perfused rat pancreas. 1) L-PIA at 1.65 microM induced a transient glucagon secretion which was not greater than that induced by the same concentration of adenosine. 2) D-PIA at a 3 fold higher concentration (4.95 microM) elicited a secretion of glucagon comparable to that induced by L-PIA 1.65 microM; thus the involved receptor does not present a high stereoselectivity for L-PIA. These results support the fact that the receptor involved in glucagon secretion is not of the A1 type.  相似文献   

16.
1. The effect of calmodulin antagonists on the rate of palmitate oxidation by isolated rat liver mitochondria was studied. 2. In the presence of 100 microM amitriptyline, chlorpromazine, prenylamine, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, palmitate oxidation was inhibited by 17, 34, 49, 31 and 37%, respectively. 3. The degree of inhibition of palmitate oxidation exerted by these chemical compounds did not appear to correlate appreciably with changes in mitochondrial membrane fluidity.  相似文献   

17.
We previously demonstrated that both adenosine receptor activation and direct activation of protein kinase C (PKC) decrease unloaded shortening velocity (V(max)) of rat ventricular myocytes. The goal of this study was to further investigate a possible link among adenosine receptors, phosphoinositide-PKC signaling, and V(max) in rat ventricular myocytes. We determined that the adenosine receptor agonist R-phenylisopropyladenosine (R-PIA, 100 microM) and the alpha-adrenergic receptor agonist phenylephrine (Phe, 10 microM) increased turnover of inositol phosphates. PKC translocation from the cytosol to the sarcolemma was used as an indicator of PKC activation. Western blot analysis demonstrated an increased PKC-epsilon translocation after exposure to R-PIA, Phe, and the PKC activators dioctanoylglycerol (50 microM) and phorbol myristate acetate (1 microM). PKC-alpha, PKC-delta, and PKC-zeta did not translocate to the membrane after R-PIA exposure. Finally, PKC inhibitors blocked R-PIA-induced decreases in V(max) as well as Ca(2+)-dependent actomyosin ATPase in rat ventricular myocytes. These results support the conclusions that adenosine receptors activate phosphoinositide-PKC signaling and that adenosine receptor-induced PKC activation mediates a decrease in V(max) in ventricular myocytes.  相似文献   

18.
X D Huang  T M Wong 《Life sciences》1991,48(11):1101-1107
The purpose of the present study was firstly to determine whether morphine and (D-Ala2, NMe-Phe4, Gly-ol)-enkephalin (DAGO), a highly selective mu-agonist, increased intracellular free calcium of rat myocytes and secondly to determine whether opioid receptors were involved. Two series of experiments were performed. In the first, the effect of morphine and DAGO on intracellular free calcium (Cai) of cultured isolated myocytes was studied with a spectrophotometric method using fura2-AM as the fluorescent Ca2+ indicator. In the second, the effect of morphine on Cai of isolated ventricular myocytes from rats which had received chronic daily injection of morphine for two weeks or myocytes which had been incubated in a solution with morphine for 12 hr was studied. It was found that both morphine at 100-250 microM and DAGO at 23-75 microM increased Cai dose-dependently and that the effect was significantly antagonized by naloxone at a concentration of 50 microM, which itself did not cause any significant alteration in Cai. Pretreatment with morphine also abolished the morphine-induced increase in Cai of isolated myocytes. The results suggest that morphine increases Cai by directly activating the cardiac receptors (most likely micro-receptors) on the membrane of ventricular myocytes.  相似文献   

19.
Vasopressin inhibits fatty acid oxidation and stimulates fatty acid esterification, glycogenolysis, and lactate production in hepatocytes from fed rats. In cells from fasted rats, the effect of the hormone on palmitate oxidation was absent, while gluconeogenesis was stimulated. The inhibitory action of vasopressin on palmitate oxidation was not due to the increased lactate production. Neither was it correlated to glycogen content or stimulation of glycogenolysis, which were restored earlier than the vasopressin effect on palmitate oxidation when previously fasted rats were refed a carbohydrate diet. The level of malonyl-CoA was moderately increased by vasopressin. Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA carnitine, glycerophosphate, ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid, and varying amounts of calcium. The oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1 to 10 microM. Simultaneously, palmitate esterification was stimulated. This effect of calcium was observed also with mitochondria from fasted rats and with octanoate as well as palmitate as the substrate. Carnitine acylation was not affected by calcium. The possibility that the observed effects of calcium on mitochondrial fatty acid utilization is part of the mechanism of action of vasopressin on hepatocyte fatty acid metabolism is discussed.  相似文献   

20.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号